A012772
Take every 5th term of Padovan sequence A000931, beginning with the sixth term.
Original entry on oeis.org
1, 3, 12, 49, 200, 816, 3329, 13581, 55405, 226030, 922111, 3761840, 15346786, 62608681, 255418101, 1042002567, 4250949112, 17342153393, 70748973084, 288627200960, 1177482265857, 4803651498529, 19596955630177
Offset: 0
-
I:=[1, 3, 12]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 18 2012
-
CoefficientList[Series[(1-x)^2/(1-5*x+4*x^2-x^3),{x,0,33}],x] (* Vincenzo Librandi, Apr 18 2012 *)
LinearRecurrence[{5,-4,1},{1,3,12},30] (* Harvey P. Dale, Aug 15 2024 *)
A012864
Take every 5th term of Padovan sequence A000931, beginning with the first term.
Original entry on oeis.org
1, 1, 3, 12, 49, 200, 816, 3329, 13581, 55405, 226030, 922111, 3761840, 15346786, 62608681, 255418101, 1042002567, 4250949112, 17342153393, 70748973084, 288627200960, 1177482265857, 4803651498529, 19596955630177
Offset: 0
-
I:=[1, 1, 3]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 18 2012
-
LinearRecurrence[{5,-4, 1},{1,1,3},30] (* Vincenzo Librandi, Apr 18 2012 *)
A112882
Indices of prime Padovan numbers: values of k such that A000931(k+5) is prime.
Original entry on oeis.org
3, 4, 5, 7, 8, 14, 19, 30, 37, 84, 128, 469, 666, 1262, 1573, 2003, 2210, 2289, 4163, 5553, 6567, 8561, 11230, 18737, 35834, 44259, 536485, 727734
Offset: 1
A153462
Triangle read by rows, = A000931(n-k+3) * (A000073 * 0^(n-k)).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 4, 2, 1, 1, 2, 0, 7, 2, 2, 1, 2, 4, 0, 13, 3, 2, 2, 2, 4, 7, 0, 24, 4, 3, 2, 4, 4, 7, 13, 0, 44, 5, 4, 3, 4, 8, 7, 13, 24, 0, 81, 7, 5, 4, 6, 8, 14, 13, 24, 44, 0, 149, 9, 7, 5, 8, 12, 14, 26, 24, 44, 81, 0, 274
Offset: 3
First few rows of the triangle =
1;
0, 1;
1, 0, 1;
1, 1, 0, 2;
1, 1, 1, 0, 4;
2, 1, 1, 2, 0, 7;
2, 2, 1, 2, 4, 0, 13;
3, 2, 2, 2, 4, 7, 0, 24;
4, 3, 2, 4, 4, 7, 13, 0, 44;
5, 4, 3, 4, 8, 7, 13, 24, 0, 81;
7, 5, 4, 6, 8, 14, 13, 24, 44, 0, 149;
9, 7, 5, 8, 12, 14, 26, 24, 44, 81, 0, 274;
12, 9, 7, 10, 16, 21, 26, 48, 44, 81, 149, 0, 504;
...
Row 9 = (2, 2, 1, 2, 4, 0, 13) = termwise products of (1, 1, 1, 2, 4, 7, 13) and (2, 2, 1, 1, 1, 0, 1). Dot product = 24 = A000073(8).
Original entry on oeis.org
0, 1, 3, 6, 14, 29, 60, 123, 249, 503, 1012, 2032, 4075, 8164, 16347, 32719, 65471, 130986, 262030, 524137, 1048376, 2096887, 4193953, 8388143, 16776600, 33553616, 67107783, 134216296, 268433559, 536868399, 1073738495, 2147479238, 4294961454, 8589926853, 17179858932, 34359724787, 68719458745, 137438929639, 274877875372, 549755772064
Offset: 5
- Vincenzo Librandi, Table of n, a(n) for n = 5..1000
- P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, Vol. 7 Issue 1 (1998).
- M. Waldschmidt, Lectures on Multiple Zeta Values (IMSC2011).
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1,-2)
-
I:=[0, 1, 3, 6]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)-Self(n-3)-2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 11 2013
-
CoefficientList[Series[-x (-1 - x + x^2)/((2 x - 1) (x^3 + x^2 - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 11 2013 *)
LinearRecurrence[{2,1,-1,-2},{0,1,3,6},40] (* Harvey P. Dale, Aug 22 2021 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -2,-1,1,2]^(n-5)*[0;1;3;6])[1,1] \\ Charles R Greathouse IV, Sep 09 2016
A291289
The Padovan sequence A000931 doubled.
Original entry on oeis.org
2, 0, 0, 2, 0, 2, 2, 2, 4, 4, 6, 8, 10, 14, 18, 24, 32, 42, 56, 74, 98, 130, 172, 228, 302, 400, 530, 702, 930, 1232, 1632, 2162, 2864, 3794, 5026, 6658, 8820, 11684, 15478, 20504, 27162, 35982, 47666, 63144, 83648, 110810, 146792, 194458, 257602, 341250
Offset: 0
-
CoefficientList[Series[2*(1 - x^2)/(1 - x^2 - x^3), {x, 0, 49}], x] (* Michael De Vlieger, Mar 21 2023 *)
A012493
Take every 5th term of Padovan sequence A000931, beginning with the fifth term.
Original entry on oeis.org
0, 2, 9, 37, 151, 616, 2513, 10252, 41824, 170625, 696081, 2839729, 11584946, 47261895, 192809420, 786584466, 3208946545, 13091204281, 53406819691, 217878227876, 888855064897, 3626169232672, 14793304131648, 60350698792449, 246206446668325, 1004422742303477
Offset: 0
-
I:=[0, 2, 9]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 17 2012
-
CoefficientList[Series[x*(2-x)/(1-5*x+4*x^2-x^3),{x,0,30}],x] (* Vincenzo Librandi, Apr 17 2012 *)
LinearRecurrence[{5,-4,1},{0,2,9},30] (* Harvey P. Dale, Nov 24 2018 *)
A018243
Inverse Euler transform of A000931.
Original entry on oeis.org
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, 28, 34, 45, 56, 73, 92, 120, 151, 197, 250, 324, 414, 537, 687, 892, 1145, 1484, 1911, 2479, 3196, 4148, 5359, 6954, 9000, 11687, 15140, 19672, 25516, 33166, 43065, 56010, 72784, 94716, 123185, 160380, 208740, 271913, 354123, 461529, 601436, 784209, 1022505, 1333856
Offset: 1
x^3 + x^5 + x^7 + x^8 + x^9 + x^10 + 2*x^11 + 2*x^12 + 3*x^13 + 3*x^14 + ...
-
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(A000931):
seq(a(n), n = 1..65); # Peter Luschny, Nov 21 2022
-
a[n_] := (1/n)*Sum[ MoebiusMu[n/d]*Floor[ Re[ N[ RootSum[ -1-#+#^3&, #^d& ]]]] , {d, Divisors[n]}]; a[2]=0; Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 05 2012, after Michael Somos *)
-
z = PowerSeriesRing(ZZ, 'z').gen().O(30)
r = (1 - (z**2 + z**3))/(1 - z**2)
F = -z*r.derivative()/r
[sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 25 2020
A132347
Concatenation of first n members of the Padovan sequence A000931.
Original entry on oeis.org
1, 10, 100, 1001, 10010, 100101, 1001011, 10010111, 100101112, 1001011122, 10010111223, 100101112234, 1001011122345, 10010111223457, 100101112234579, 10010111223457912, 1001011122345791216, 100101112234579121621
Offset: 1
-
Module[{nn=20,padseq},padseq=LinearRecurrence[{0,1,1},{1,0,0},nn];Table[FromDigits[ Flatten[ IntegerDigits/@Take[padseq,n]]],{n,nn}]] (* Harvey P. Dale, Feb 18 2024 *)
A133039
a(n) = P(n)^3 - P(n)^2 where P(n) = A000931(n).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 18, 48, 100, 294, 648, 1584, 3840, 8820, 21168, 49284, 115248, 270400, 628660, 1468548, 3420150, 7960000, 18539400, 43120350, 100328400, 233365440, 542672640, 1262045880, 2934442944, 6822962664, 15863704528, 36881698048, 85746672900, 199347278724, 463445232298
Offset: 0
a(10)=18 because Padovan(10)=3 and 3^3=27 and 3^2=9 and 27-9=18.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,1,-9,3,-9,3,-3,15,-9,9,-3,1,-2,1,-1).
-
P[0] := 1; P[1] := 0; P[2] := 0; P[n_] := P[n] = P[n - 2] + P[n - 3]; Table[P[n]^3 - P[n]^2, {n, 0, 50}] (* G. C. Greubel, Oct 02 2017 *)
-
x='x+O('x^50); concat([0, 0, 0, 0, 0, 0, 0, 0], Vec(2*x^8*(x^7-x^6+2*x^5+x^2-2*x+2)/((x -1)*(x^3-2*x^2+3*x-1)*(x^3-x^2+2*x-1)*(x^3-x-1)*(x^6+3*x^5+5*x^4 +5*x^3 +5*x^2+3*x+1)))) \\ G. C. Greubel, Oct 02 2017
Incorrect initial zero of the sequence deleted by
Colin Barker, Sep 18 2013
Comments