cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 82 results. Next

A123214 Primes q such that (2^p + 1)/3 is prime, where p = Prime[q]; or primes in A123176[n].

Original entry on oeis.org

2, 3, 5, 7, 11, 31, 43, 1697, 12923, 13103, 77509
Offset: 1

Views

Author

Alexander Adamchuk, Oct 05 2006

Keywords

Comments

A123176[n] are the numbers n such that (2^p + 1)/3 is prime, where p = Prime[n]. A123176[n] = PrimePi[A000978[n]]. PrimePi[a(n)] = {1,2,3,4,5,11,14,265,1540,1559,...}.

Examples

			A123176[n] begin {2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 22, 26, 31, 39, 43, ...}.
Thus
a(1) = 2, a(2) = 3, a(3) = 5, a(4) = 7, a(5) = 11, a(6) = 31, a(7) = 43.
		

Crossrefs

Extensions

One more term from Max Alekseyev, Feb 06 2010

A125955 Numbers k such that (2^k + 7^k)/9 is prime.

Original entry on oeis.org

5, 23, 73, 101, 401, 419, 457, 811, 1163, 1511, 8011
Offset: 1

Views

Author

Alexander Adamchuk, Feb 06 2007

Keywords

Comments

All terms are primes. Corresponding primes of the form (2^k + 7^k)/9 are {1871, 3040971926676589439, 5469081705798319217773539465593130845206220817280793349743311, ...}.
a(12) > 10^5. - Robert Price, Aug 28 2012

Crossrefs

Cf. A000978 = numbers n such that (2^n + 1)/3 is prime. Cf. A057469 = numbers n such that (2^n + 3^n)/5 is prime. Cf. A082387 = numbers n such that (2^n + 5^n)/7 is prime.

Programs

  • Mathematica
    Do[p=Prime[n];f=(2^p+7^p)/9; If[PrimeQ[f], Print[{p, f}]], {n, 1, 1000}]
  • PARI
    is(n)=ispseudoprime((2^n+7^n)/9) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

More terms from Ryan Propper, Mar 23 2007

A185230 Numbers n such that (33^n + 1)/34 is prime.

Original entry on oeis.org

5, 67, 157, 12211, 313553
Offset: 1

Views

Author

Robert Price, Aug 29 2013

Keywords

Comments

All terms are prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (33^p + 1)/34 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((33^n+1)/34) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(5) from Paul Bourdelais, Feb 26 2021

A227172 Numbers k such that (48^k + 47^k)/95 is prime.

Original entry on oeis.org

13, 31, 631, 5279, 36781
Offset: 1

Views

Author

Jean-Louis Charton, Jul 03 2013

Keywords

Comments

All terms are prime.
a(5) > 10^4.

Crossrefs

Programs

Extensions

a(5) from Michael S. Branicky, Jun 23 2025

A227173 Numbers k such that (138^k + 137^k)/275 is prime.

Original entry on oeis.org

7, 13, 2371, 2791, 2999, 4621, 8819, 21563
Offset: 1

Views

Author

Jean-Louis Charton, Jul 03 2013

Keywords

Comments

All terms are prime.

Crossrefs

Programs

Extensions

a(8) from Tyler Busby, Mar 19 2023

A227174 Numbers n such that (140^n + 139^n)/279 is prime.

Original entry on oeis.org

23, 41, 43, 151, 2927, 6133
Offset: 1

Views

Author

Jean-Louis Charton, Jul 03 2013

Keywords

Comments

All terms are prime.
a(7) > 10^4.
a(7) > 43400. - Lucas A. Brown, Nov 26 2020

Crossrefs

Programs

A236530 Numbers n such that (48^n + 1)/49 is prime.

Original entry on oeis.org

5, 17, 131, 84589
Offset: 1

Views

Author

Robert Price, Jan 27 2014

Keywords

Comments

All terms are primes.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (48^p + 1)/49 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((48^n+1)/49) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Incorrect first term deleted by Robert Price, Feb 21 2014

A250291 Numbers k such that (2^k+1)/3 is a semiprime.

Original entry on oeis.org

29, 37, 41, 47, 49, 53, 67, 71, 73, 103, 107, 109, 139, 151, 179, 223, 229, 251, 269, 277, 311, 349, 353, 433, 457, 487, 503, 599, 601, 613, 619, 643, 739, 757, 827, 839, 1031, 1061, 1117, 1123, 1217
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Comments

If (2^k+1)/3 is a semiprime, k must be prime or the square of a prime; the only known square of a prime in this sequence is 49.
a(42) >= 1259.

Examples

			a(1) = 29 so (2^29+1)/3 = 178956971 = 59 * 3033169 is a semiprime.
		

Crossrefs

Extensions

a(40)-a(41) from Max Alekseyev, Feb 25 2025

A280083 Numbers k such that (2^k + 1)/(2 - (-1)^k) is a prime.

Original entry on oeis.org

0, 2, 3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399
Offset: 1

Views

Author

Thomas Ordowski, Dec 25 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 10^3], PrimeQ[(2^# + 1)/(2 - (-1)^#)] &] (* Michael De Vlieger, Dec 25 2016 *)

A301510 Smallest positive number b such that ((b+1)^prime(n) + b^prime(n))/(2*b + 1) is prime, or 0 if no such b exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 16, 1, 11, 6, 37, 1, 9, 120, 9, 1, 2, 67, 16, 1, 26, 103, 12, 60, 1, 239, 4, 40, 2, 44, 174, 33, 1, 3, 260, 114, 1, 161, 70, 1, 3, 2, 3, 50, 45, 472, 228, 183, 66, 37, 7, 122, 235, 68, 102, 294, 8, 13, 1, 40, 62, 143, 1, 61, 7
Offset: 2

Views

Author

Tim Johannes Ohrtmann, Mar 22 2018

Keywords

Comments

Conjecture: a(n) > 0 for every n > 1.
Records: 1, 4, 16, 37, 120, 239, 260, 472, 917, 1539, 6633, 7050, 12818, ..., which occur at n = 2, 10, 13, 17, 20, 32, 41, 52, 72, 128, 171, 290, 309, ... - Robert G. Wilson v, Jun 16 2018

Examples

			a(10) = 4 because (5^29 + 4^29)/9 = 2149818248341 is prime and (2^29 + 1^29)/3, (3^29 + 2^29)/5 and (4^29 + 3^29)/7 are all composite.
		

Crossrefs

Numbers n such that ((b+1)^n + b^n)/(2*b + 1) is prime for b = 1 to 18: A000978, A057469, A128066, A128335, A128336, A187805, A181141, A187819, A217095, A185239, A213216, A225097, A224984, A221637, A227170, A228573, A227171, A225818.

Programs

  • Mathematica
    Table[p = Prime[n]; k = 1; While[q = ((b+1)^n+b^n)/(2*b+1); ! PrimeQ[q], k++]; k, {n, 200}]
    f[n_] := Block[{b = 1, p = Prime@ n}, While[! PrimeQ[((b +1)^p + b^p)/(2b +1)], b++]; b]; Array[f, 70, 2] (* Robert G. Wilson v, Jun 13 2018 *)
  • PARI
    for(n=2, 200, b=0; until(isprime((((b+1)^prime(n)+b^prime(n))/(2*b+1))), b++); print1(b,", ")) \\ corrected by Eric Chen, Jun 06 2018

Formula

a(n) = A250201(2*prime(n)) - 1 for n >= 2. - Eric Chen, Jun 06 2018
Previous Showing 61-70 of 82 results. Next