A225198
Number of 8-line partitions of n (i.e., planar partitions of n with at most 8 lines).
Original entry on oeis.org
1, 1, 3, 6, 13, 24, 48, 86, 160, 281, 497, 851, 1460, 2442, 4076, 6692, 10928, 17623, 28266, 44873, 70842, 110910, 172674, 266942, 410512, 627387, 954113, 1443063, 2172456, 3254446, 4854236, 7208018, 10659872, 15700111, 23035956, 33671399, 49042600, 71179250, 102963936, 148452294
Offset: 0
- Vincenzo Librandi and Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - _N. J. A. Sloane_, May 21 2014
- Vaclav Kotesovec, Graph - The asymptotic ratio (100000 terms, convergence is very slow)
-
m:=50; r:=8; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // G. C. Greubel, Dec 10 2018
-
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(
min(d, 8)*d, d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..45); # Alois P. Heinz, Mar 15 2014
-
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 8]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
m:=50; r:=8; CoefficientList[Series[Product[(1-x^k)^(r-k),{k,1,r-1}]/( Product[(1-x^j), {j,1,m}])^r, {x,0,m}],x] (* G. C. Greubel, Dec 10 2018 *)
-
x='x+O('x^66); r=8; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
-
m=50; r=8
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(m)
s = prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^r
s.coefficients() # G. C. Greubel, Dec 10 2018
A225199
Number of 9-line partitions of n (i.e., planar partitions of n with at most 9 lines).
Original entry on oeis.org
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 499, 856, 1471, 2466, 4124, 6788, 11110, 17965, 28890, 45995, 72819, 114354, 178577, 276952, 427279, 655199, 999773, 1517388, 2292377, 3446462, 5159352, 7689517, 11414606, 16875813, 24856366, 36474188, 53334376, 77717219, 112874158, 163403202
Offset: 0
- Vincenzo Librandi and Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020, p. 28.
- P. A. MacMahon, The connexion between the sum of the squares of the divisors and the number of partitions of a given number, Messenger Math., 54 (1924), 113-116. Collected Papers, MIT Press, 1978, Vol. I, pp. 1364-1367. See Table II. - _N. J. A. Sloane_, May 21 2014
-
m:=50; r:=9; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-x^k)^(r-k): k in [1..r-1]])/(&*[1-x^j: j in [1..2*m]] )^r )); // G. C. Greubel, Dec 10 2018
-
b:= proc(n,i) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(min(i, 9)+j-1, j)*
b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 15 2014
-
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[Min[d, 9]*d, {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
m:=50; r:=9; CoefficientList[Series[Product[(1-x^k)^(r-k),{k,1,r-1}]/( Product[(1-x^j), {j,1,m}])^r, {x,0,m}],x] (* G. C. Greubel, Dec 10 2018 *)
-
x='x+O('x^66); r=9; Vec( prod(k=1,r-1, (1-x^k)^(r-k)) / eta(x)^r )
-
m=50; r=9
R = PowerSeriesRing(ZZ, 'x')
x = R.gen().O(m)
s = (prod((1-x^k)^(r-k) for k in (1..r-1))/prod(1-x^j for j in (1..m+2))^r)
s.coefficients() # G. C. Greubel, Dec 10 2018
A333893
Array read by antidiagonals: T(n,k) is the number of unlabeled loopless multigraphs with n nodes of degree k or less.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 5, 3, 1, 1, 1, 5, 8, 10, 3, 1, 1, 1, 6, 14, 26, 16, 4, 1, 1, 1, 7, 20, 61, 60, 29, 4, 1, 1, 1, 8, 30, 128, 243, 184, 45, 5, 1, 1, 1, 9, 40, 254, 800, 1228, 488, 75, 5, 1, 1, 1, 10, 55, 467, 2518, 7252, 6684, 1509, 115, 6, 1
Offset: 0
Array begins:
==============================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 4 5 6 7 8 ...
3 | 1 2 5 8 14 20 30 40 ...
4 | 1 3 10 26 61 128 254 467 ...
5 | 1 3 16 60 243 800 2518 6999 ...
6 | 1 4 29 184 1228 7252 38194 175369 ...
7 | 1 4 45 488 6684 78063 772243 6254652 ...
...
A091356
Number of planar partitions of n with exactly 2 rows.
Original entry on oeis.org
1, 2, 5, 9, 18, 30, 53, 85, 139, 215, 336, 504, 760, 1115, 1635, 2351, 3375, 4770, 6725, 9368, 13006, 17885, 24510, 33319, 45139, 60743, 81457, 108610, 144334, 190844, 251542, 330082, 431825, 562710, 731154, 946644, 1222305, 1573155, 2019471
Offset: 2
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(min(d, k)
*d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n, 2)-b(n, 1):
seq(a(n), n=2..50); # Alois P. Heinz, Oct 02 2018
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[Sum[Min[d, k] d, {d, Divisors[j]}] b[n - j, k], {j, 1, n}]/n];
a[n_] := b[n, 2] - b[n, 1];
a /@ Range[2, 50] (* Jean-François Alcover, Oct 28 2020, after Alois P. Heinz *)
A091357
Number of planar partitions of n with exactly 3 rows.
Original entry on oeis.org
1, 2, 5, 11, 22, 42, 78, 138, 239, 405, 669, 1088, 1741, 2744, 4267, 6564, 9975, 15019, 22394, 33111, 48549, 70678, 102127, 146636, 209186, 296697, 418401, 586985, 819218, 1137962, 1573336, 2165888, 2968914, 4053563, 5512820, 7469989
Offset: 3
A093010
Triangle, read by rows, such that the convolution of the n-th row with the natural numbers forms the n-th diagonal, for n>=0, where each row begins with 1.
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 6, 7, 4, 1, 8, 14, 10, 5, 1, 10, 22, 22, 13, 6, 1, 12, 33, 40, 30, 16, 7, 1, 14, 45, 66, 58, 38, 19, 8, 1, 16, 60, 100, 104, 76, 46, 22, 9, 1, 18, 76, 146, 168, 142, 94, 54, 25, 10, 1, 20, 95, 202, 262, 242, 180, 112, 62, 28, 11, 1, 22, 115, 272, 386, 394, 316
Offset: 0
T(7,3) = 66 = 1*4+8*3+14*2+10*1 = T(4,0)*4+T(4,1)*3+T(4,2)*2+T(4,3)*1; this is also the third term of the 4th-diagonal.
The 6th antidiagonal is {1,10,14,4}, which has a sum of 29 = A000990(6) = number of 2-line partitions of 6.
Rows begin:
{1},
{1,2},
{1,4,3},
{1,6,7,4},
{1,8,14,10,5},
{1,10,22,22,13,6},
{1,12,33,40,30,16,7},
{1,14,45,66,58,38,19,8},
{1,16,60,100,104,76,46,22,9},
{1,18,76,146,168,142,94,54,25,10},
{1,20,95,202,262,242,180,112,62,28,11},
{1,22,115,272,386,394,316,218,130,70,31,12},...
A147767
Triangle read by rows, square of A116598.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 2, 2, 0, 1, 5, 2, 2, 0, 1, 6, 5, 2, 2, 0, 1, 6, 5, 2, 2, 0, 1, 13, 6, 5, 2, 2, 0, 1, 16, 13, 6, 5, 2, 2, 0, 1, 30, 16, 13, 6, 5, 2, 2, 0, 1, 40, 30, 16, 13, 6, 5, 2, 2, 0, 1, 40, 30, 16, 13, 6, 5, 2, 2, 0, 1
Offset: 0
First few rows of the triangle:
1;
0, 1;
2, 0, 1;
2, 2, 0, 1;
5, 2, 2, 0, 1;
6, 5, 2, 2, 0, 1;
13, 6, 5, 2, 2, 0, 1;
16, 13, 6, 5, 2, 2, 0, 1;
...
A305654
a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^n)).
Original entry on oeis.org
1, 1, 4, 14, 65, 323, 1890, 12002, 83901, 630818, 5081318, 43546333, 395422430, 3788368227, 38151667046, 402516707510, 4436230390977, 50948789415297, 608433141666219, 7540823673023319, 96826154085714992, 1285991546051286085, 17640769457638701839, 249602608552024560609
Offset: 0
-
Table[SeriesCoefficient[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^n), {k, 1, n}]], {x, 0, n}], {n, 0, 23}]
Table[SeriesCoefficient[Product[1/(1 - x^k)^(2 Binomial[n + k - 2, n - 1] - Binomial[n + k - 3, n - 2]), {k, 1, n}], {x, 0, n}], {n, 0, 23}]
A381265
a(n) is the number of solid (3D) partitions of n with 2 layers and second layer a plane partition of 3.
Original entry on oeis.org
6, 21, 57, 138, 294, 606, 1170, 2208, 4008, 7176, 12492, 21510, 36348, 60801, 100281, 164019, 265263, 425853
Offset: 3
a(3)=6 since the 6 solid partitions of {3,3} are:
z[{{3}},{{3}}],
z[{{2,1}},{{2,1}}],
z[{{1,1,1}},{{1,1,1}}],z[{{2},{1}},{{2},{1}}],
z[{{1,1},{1}},{{1,1},{1}}],
z[{{1},{1},{1}},{{1},{1},{1}}].
-
Table[Length@solidformBTK[{n,3}],{n,3,20}] (* or *)
g=20;3 CoefficientList[Series[2/Product[(1-x^m)^m,{m,g}]+ 1/(1-x)-(1-x)/Product[(1-x^m)^2,{m,g}]-2/Product[(1-x^m),{m,g}],{x,0,g}],x]
Comments