cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 590 results. Next

A340395 a(n) = A340131(A001006(n)).

Original entry on oeis.org

5, 15, 50, 150, 455, 1365, 4100, 12300, 36905, 110715, 332150, 996450, 2989355, 8968065, 26904200, 80712600, 242137805, 726413415, 2179240250, 6537720750, 19613162255, 58839486765, 176518460300, 529555380900, 1588666142705, 4765998428115, 14297995284350
Offset: 2

Views

Author

Gennady Eremin, Jan 06 2021

Keywords

Comments

This sequence is associated with A340131, whose terms are sorted by the length of their ternary code. Elements with the same length of ternary code form a range that has a maximum. The maximal term of the n-range (a set of elements with ternary code length n in A340131) is a(n). Example: numbers 29, 33, 44, 45 and 50 have a ternary length of 4 (see A340131), respectively a(4) = 50.
Ternary code for a(n) is 12..12 for even n and 12..120 for odd n.

Examples

			A001006(2) = 2, so a(2) = A340131(2) = 5.
A001006(3) = 4, so a(3) = A340131(4) = 15, etc.
		

Crossrefs

Subsequence of A340131.

Programs

  • PARI
    Vec(5/(1 - 3*x - x^2 + 3*x^3) + O(x^30)) \\ Andrew Howroyd, Jan 08 2021

Formula

a(n) = 5*3^(n-2*k)*(9^k-1)/8 where k = floor(n/2).
a(n+1) = 3*a(n) for even n >= 2; a(n+1) = 3*a(n)+5 for odd n >= 3.
a(n) = 5*A033113(n-1).
a(n) = (5/8)*(3^n - (-1)^(n-1) - 2).
a(n) = 2*a(n-1) + 3*a(n-2) + 5 for n > 3.
From Stefano Spezia, Jan 06 2021: (Start)
G.f.: 5*x^2/(1 - 3*x - x^2 + 3*x^3).
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n > 4. (End)

A348189 Pseudo-involutory Riordan companion of 1 + 2*x*M(x), where M(x) is the g.f. of A001006.

Original entry on oeis.org

1, 0, 0, 2, 0, 6, 8, 24, 60, 148, 396, 1026, 2744, 7350, 19872, 54102, 148104, 407682, 1127328, 3130542, 8726256, 24407634, 68482776, 192698124, 543642476, 1537443024, 4357677516, 12376868254, 35221087656, 100409367690, 286730523104, 820078634232, 2348966799132
Offset: 1

Views

Author

Alexander Burstein, Oct 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[(1 - Sqrt[1-2*x-3*x^2])/(x * (2 + x - Sqrt[1-2*x-3*x^2])), {x, 0, n}]; Array[a, 33, 0] (* Amiram Eldar, Oct 06 2021 *)
  • PARI
    my(x='x+O('x^35)); Vec((1-sqrt(1-2*x-3*x^2))/(x*(2+x-sqrt(1-2*x-3*x^2)))) \\ Michel Marcus, Oct 06 2021

Formula

G.f.: A(x) = (1 - sqrt(1 - 2*x - 3*x^2))/(x*(2 + x - sqrt(1 - 2*x - 3*x^2))).
If M(x) is the g.f. of A001006, then A(x) = (1 + 2*x*M(x))/(1 + 2*x + 2*x^2*M(x)).
Let M(x) be the g.f. of A001006 and F(x) = 1 + 2*x*M(x) (equivalently, x*F(x) = g.f. of A007971). Then F(-x*A(x)) = 1/F(x).
A(-x*A(x)) = 1/A(x).
G.f.: Let F(x) be the g.f. of A107264, then A(x) = 1 + 2*x^3*A(x)^2*F(x^2*A(x)). - Alexander Burstein, Feb 14 2022

A354292 Primes p such that for all m, M(m) is not divisible by p^2 where M(n) is the n-th Motzkin number A001006.

Original entry on oeis.org

5, 13, 31, 37, 61, 79, 97, 103
Offset: 1

Views

Author

Michel Marcus, May 23 2022

Keywords

Crossrefs

Motzkin numbers A001006 read mod 2,3,4,5,6,7,8,11: A039963, A039964, A299919, A258712, A299920, A258711, A299918, A258710.

A045994 a(0)=1, a(n) = M(n) + Sum_{k=1..n-1} M(k)*a(n-k-1), where M(n) are the Motzkin numbers (A001006).

Original entry on oeis.org

1, 1, 3, 7, 18, 47, 125, 337, 918, 2522, 6977, 19415, 54297, 152507, 429974, 1216297, 3450817, 9816460, 27991422, 79989880, 229034820, 656979399, 1887653560, 5431969355, 15653355151, 45167783715, 130491471940, 377426429199
Offset: 0

Views

Author

Keywords

Comments

Apparently the number of grand Motzkin paths of length n that avoid DD starting at level 1. That is, avoiding either positive to negative or negative to positive crossings of the x axis. - David Scambler, Jul 04 2013

Crossrefs

Cf. A005773.

Programs

  • Mathematica
    m[0] = 1; m[n_] := m[n] = m[n-1] + Sum[m[k]*m[n-k-2], {k, 0, n-2}]; a[0] = 1; a[n_] := a[n] = m[n] + Sum[m[k]*a[n-k-1], {k, 1, n-1}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 04 2013 *)
  • Maxima
    a(n):=sum(sum(k/i*sum(binomial(i,j)*binomial(j,2*j-i-k),j,0,i)*binomial(n-i+k-1,k-1)*(-1)^(n-i),i,k,n),k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */

Formula

G.f.: 1/(1-x(1+x)*M(x)), where M(x) is the generating function for the Motzkin numbers. a(n) = Sum(Sum(k/i*Sum(binomial(i,j)*binomial(j,2*j-i-k),j,0,i)*binomial(n-i+k-1,k-1)*(-1)^(n-i),i,k,n),k,1,n), n>0. - Vladimir Kruchinin, Sep 10 2010
Conjecture: (n+1)*a(n) + 2*(-2*n-1)*a(n-1) + 2*(-n+3)*a(n-2) + (11*n-19)*a(n-3) + (11*n-27)*a(n-4) + 3*(n-3)*a(n-5) = 0. - R. J. Mathar, Sep 27 2013

A069657 Sum( S(n,k) * M(k-1), k=1..n), where S(n,k) = Stirling numbers of the second kind, M(n) = Motzkin numbers, A001006.

Original entry on oeis.org

0, 1, 2, 6, 24, 115, 628, 3818, 25455, 183968, 1428184, 11824098, 103794727, 961461179, 9360372700, 95448502365, 1016413911387, 11273822075837, 129950445723958, 1553488011957986, 19225242250821071, 245899882175001580, 3245812116097119188, 44155099624566615247
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Crossrefs

A132939 Concatenate Motzkin numbers (A001006).

Original entry on oeis.org

1, 11, 112, 1124, 11249, 1124921, 112492151, 112492151127, 112492151127323, 112492151127323835, 1124921511273238352188, 11249215112732383521885798, 1124921511273238352188579815511, 112492151127323835218857981551141835
Offset: 0

Views

Author

Omar E. Pol, Sep 12 2007

Keywords

Crossrefs

Motzkin numbers: A001006. Cf. A007908, A019518, A059996.

Extensions

a(13) corrected by Georg Fischer, Dec 30 2022

A134822 Successive digits of Motzkin numbers A001006(n).

Original entry on oeis.org

1, 1, 2, 4, 9, 2, 1, 5, 1, 1, 2, 7, 3, 2, 3, 8, 3, 5, 2, 1, 8, 8, 5, 7, 9, 8, 1, 5, 5, 1, 1, 4, 1, 8, 3, 5, 1, 1, 3, 6, 3, 4, 3, 1, 0, 5, 7, 2, 8, 5, 3, 4, 6, 7, 2, 3, 5, 6, 7, 7, 9, 6, 5, 3, 6, 3, 8, 2, 1, 8, 1, 9, 9, 2, 8, 4, 5, 0, 8, 5, 2, 0, 1, 9, 1, 4, 2, 5, 4, 7, 5, 5, 9, 4, 0, 0, 7, 6, 3, 2, 2, 3
Offset: 1

Views

Author

Omar E. Pol, Nov 12 2007

Keywords

Crossrefs

A144025 Eigentriangle by rows, A001006(n-k)*A005773(k); 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 2, 2, 5, 9, 4, 4, 5, 13, 21, 9, 8, 10, 13, 35, 51, 21, 18, 20, 26, 35, 96, 127, 51, 42, 45, 52, 70, 96, 267, 323, 127, 102, 105, 117, 140, 192, 267, 750, 835, 323, 254, 255, 273, 315, 384, 534, 750, 2123, 2188, 835, 646, 635, 663, 735, 864, 1068, 1500, 2123, 6046
Offset: 0

Views

Author

Gary W. Adamson, Sep 07 2008

Keywords

Comments

Left border = Motzkin numbers, A001006.
Right border = A005773.
Row sums = A005773 shifted: (1, 2, 5, 13, 35, 96, 267,...).
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
    1;
    1,   1;
    2,   1,   2;
    4,   2,   2,   5;
    9,   4,   4,   5,  13;
   21,   9,   8,  10,  13,  35;
   51,  21,  18,  20,  26,  35,  96;
  127,  51,  42,  45,  52,  70,  96, 267;
  323, 127, 102, 105, 117, 140, 192, 267, 750;
  835, 323, 254, 255, 273, 315, 384, 534, 750, 2123;
  ...
Row 3 = (4, 2, 2, 5) = termwise product of (4, 2, 1, 1) and the first 4 terms of A005773: (1, 1, 2, 5) = (4*1, 2*1, 1*2, 1*5). (4, 2, 1, 1) = the first 4 terms of A001066, reversed.
		

Crossrefs

Formula

Eigentriangle by rows: T(n,k) = A001006(n-k)*A005773(k); 0<=k<=n.

Extensions

a(53) corrected by Georg Fischer, Apr 29 2025

A168594 G.f. A(x) satisfies: A(x) = F(x/A(x)) where A(x*F(x)) = F(x) = g.f. of A133053, which is the squares of Motzkin numbers (A001006).

Original entry on oeis.org

1, 1, 3, 6, 20, 70, 302, 1386, 6902, 35862, 194202, 1082642, 6191680, 36141118, 214715244, 1294849186, 7911159522, 48888093910, 305165808290, 1921992409066, 12202404037088, 78031629139246, 502263432618224, 3252160882871210
Offset: 0

Views

Author

Paul D. Hanna, Dec 01 2009

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 20*x^4 + 70*x^5 + 302*x^6 +...
A(x) satisfies: A(x*F(x)) = F(x) = g.f. of A133053:
F(x) = 1 + x + 4*x^2 + 16*x^3 + 81*x^4 + 441*x^5 + 2601*x^6 +...+ A001006(n)^2*x^n +...
		

Crossrefs

Cf. A001006, A133053, A168344 (variant).

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(x/serreverse(x*sum(m=0,n,polcoeff((1/x)*serreverse(x/(1+x+x^2+x^2*O(x^m))), m)^2 *x^m)+x^2*O(x^n)),n))}

Formula

G.f.: A(x) = x/Series_Reversion(x*F(x)) where F(x) = g.f. of A133053.

A187537 Riordan array (1, (A000045(x)/x-1) *A001006(A000045(x)/x-1) ).

Original entry on oeis.org

1, 3, 1, 9, 6, 1, 31, 27, 9, 1, 113, 116, 54, 12, 1, 431, 493, 282, 90, 15, 1, 1697, 2098, 1383, 556, 135, 18, 1, 6847, 8975, 6567, 3107, 965, 189, 21, 1, 28161, 38640, 30636, 16376, 6070, 1536, 252, 24, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 11 2011

Keywords

Comments

The column with index 0 of the standard array is not incorporated in this triangle. (It contains a 1 followed by zeros.)
The truncated Fibonacci sequence is A000045(x)/x-1 = x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5+ ...
The composition with the Motzkin sequence is A001006(...) = 1 + x + 4*x^2 + 15*x^3 + 58*x^4 + 229*x^5 + ...
Eventually this defines the second component in the definition (A000045(...)/x-1)*A001006(...) = x + 3*x^2 + 9*x^3 + 31*x^4 + 113*x^5 + 431*x^6 + ... as seen in the left column of the array.

Examples

			     1,
     3,    1,
     9,    6,    1,
    31,   27,    9,    1,
   113,  116,   54,   12,   1,
   431,  493,  282,   90,  15,   1,
  1697, 2098, 1383,  556, 135,  18,  1,
  6847, 8975, 6567, 3107, 965, 189, 21, 1
		

Programs

  • Maxima
    T(n,m):=m*sum(sum(binomial(i-1,k-1)*binomial(i,n-i),i,k,n)*sum(binomial(j,2*j-m-k)*binomial(k,j),j,0,k)/k,k,m,n);

Formula

T(n,m) = m*Sum_{k=m..n} Sum_{i=k..n} binomial(i-1,k-1)*binomial(i,n-i)*Sum_{j=0..k} binomial(j,2*j-m-k)*binomial(k,j)/k, n>0, m<=n.
Previous Showing 51-60 of 590 results. Next