cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 117 results. Next

A346460 Square array read by downward antidiagonals in which row n lists all numbers k for which all positive integers cannot be colored with two colors without any positive integer x being the same color as n*x or k*x (for n >= 2).

Original entry on oeis.org

4, 16, 9, 64, 81, 2, 256, 729, 8, 25, 1024, 6561, 16, 625, 36, 4096, 59049, 32, 15625, 1296, 49, 16384, 531441, 128, 390625, 46656, 2401, 4, 65536, 4782969, 256, 9765625, 1679616, 117649, 16, 3, 262144, 43046721, 512, 244140625, 60466176, 5764801, 64, 27, 100
Offset: 2

Views

Author

M. Eren Kesim, Aug 25 2021

Keywords

Comments

Row n lists all positive integers k for which there exists at least one pair of positive integers (x, y) such that n^x = k^y and x+y is odd.
If n is an element of A007916, then row n lists all perfect powers of n^2.
A positive integer k is in row n if and only if there exists a positive integer x for which A052410(n)^x = k and A007814(A052409(n)) != A007814(x).

Examples

			Table begins:
     4,    16,      64,       256,        1024,          4096,           16384, ...
     9,    81,     729,      6561,       59049,        531441,         4782969, ...
     2,     8,      16,        32,         128,           256,             512, ...
    25,   625,   15625,    390625,     9765625,     244140625,      6103515625, ...
    36,  1296,   46656,   1679616,    60466176,    2176782336,      7836416409, ...
    49,  2401,  117649,   5764801,   282475249,   13841287201,    678223072849, ...
     4,    16,      64,       256,        1024,          4096,           16384, ...
     3,    27,      81,       243,        2187,          6561,           19683, ...
   100, 10000, 1000000, 100000000, 10000000000, 1000000000000, 100000000000000, ...
		

Crossrefs

Programs

  • Python
    # See links.

A013615 Triangle of coefficients in expansion of (1+8x)^n.

Original entry on oeis.org

1, 1, 8, 1, 16, 64, 1, 24, 192, 512, 1, 32, 384, 2048, 4096, 1, 40, 640, 5120, 20480, 32768, 1, 48, 960, 10240, 61440, 196608, 262144, 1, 56, 1344, 17920, 143360, 688128, 1835008, 2097152, 1, 64, 1792, 28672, 286720, 1835008, 7340032, 16777216, 16777216
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,8} having n-k zeros. - Milan Janjic, Jul 24 2015

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+8*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 25 2015

Formula

G.f.: 1 / [1 - x(1+8y)].
T(n,k) = 8^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*7^(n-i). Row sums are 9^n = A001019. - Mircea Merca, Apr 28 2012

A013791 a(n) = 9^(4*n + 3).

Original entry on oeis.org

729, 4782969, 31381059609, 205891132094649, 1350851717672992089, 8862938119652501095929, 58149737003040059690390169, 381520424476945831628649898809, 2503155504993241601315571986085849, 16423203268260658146231467800709255289
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001019.

Programs

Formula

From Philippe Deléham, Dec 07 2008: (Start)
a(n) = 6561*a(n-1); a(0)=729.
G.f.: 729/(1-6561*x).
a(n) = 81*A013790(n). (End)

A014393 Final 2 digits of 9^n.

Original entry on oeis.org

1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89
Offset: 0

Views

Author

Keywords

Comments

Period is 10, i.e., a(n+10) = a(n). - Martin Renner, Jun 11 2020

Crossrefs

Cf. A001019 (9^n), A010690 (final digit of 9^n).

Programs

  • Magma
    [Modexp(9, n, 100): n in [0..110]]; // Vincenzo Librandi, Aug 16 2016
    
  • Maple
    seq(9^n mod 100, n=0..80); # Martin Renner, Jun 11 2020
  • Mathematica
    Flatten[Prepend[FromDigits[Take[IntegerDigits[#],-2]]&/@(9^Range[2,60]),{1,9}]] (* Harvey P. Dale, Jan 22 2011 *)
    PowerMod[9, Range[0, 80], 100] (* Vincenzo Librandi, Aug 16 2016 *)
  • PARI
    a(n) = lift(Mod(9, 100)^n); \\ Michel Marcus, Aug 16 2016

Formula

a(n) = 9^n mod 100. - Martin Renner, Jun 11 2020

A024103 a(n) = 9^n - n^2.

Original entry on oeis.org

1, 8, 77, 720, 6545, 59024, 531405, 4782920, 43046657, 387420408, 3486784301, 31381059488, 282429536337, 2541865828160, 22876792454765, 205891132094424, 1853020188851585, 16677181699666280, 150094635296998797
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences listed in A024025.

Programs

  • Magma
    [9^n-n^2: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
  • Mathematica
    Table[9^n - n^2, {n, 0, 25}] (* or *) CoefficientList[Series[(1 - 4 x + 11 x^2 + 8 x^3)/((1 - 9 x) (1 - x)^3), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 06 2014 *)

Formula

G.f.: (1-4*x+11*x^2+8*x^3)/((1-9*x)*(1-x)^3). - Vincenzo Librandi, Oct 06 2014
a(n) = 12*a(n-1) -30*a(n-2) +28*a(n-3) -9*a(n-4) for n>3. - Vincenzo Librandi, Oct 06 2014
a(n) = A001019(n) - A000290(n). - Michel Marcus, Oct 06 2014

A024105 a(n) = 9^n - n^4.

Original entry on oeis.org

1, 8, 65, 648, 6305, 58424, 530145, 4780568, 43042625, 387413928, 3486774401, 31381044968, 282429515745, 2541865799768, 22876792416545, 205891132044024, 1853020188786305, 16677181699583048, 150094635296894145
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [9^n-n^4: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
  • Mathematica
    Table[9^n-n^4,{n,0,25}] (* or *) LinearRecurrence[{14,-55,100,-95,46,-9},{1,8,65,648,6305,58424},30] (* Harvey P. Dale, Oct 07 2013 *)

Formula

a(n) = 14*a(n-1) - 55*a(n-2) + 100*a(n-3) - 95*a(n-4) + 46*a(n-5) - 9*a(n-6); a(0)=1, a(1)=8, a(2)=65, a(3)=648, a(4)=6305, a(5)=58424. - Harvey P. Dale, Oct 07 2013
G.f.: (1 - 6*x + 8*x^2 + 78*x^3 + 103*x^4 + 8*x^5)/((1 - x)^5*(1 - 9*x)). - Stefano Spezia, Aug 01 2022

A024108 a(n) = 9^n-n^7.

Original entry on oeis.org

1, 8, -47, -1458, -9823, -19076, 251505, 3959426, 40949569, 382637520, 3476784401, 31361572438, 282393704673, 2541803079812, 22876687041457, 205890961235274, 1853019920416385, 16677181289327896, 150094634684779089, 1350851716779120350
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [9^n-n^7: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
    
  • Mathematica
    Table[9^n - n^7, {n, 0, 19}] (* Michael De Vlieger, Mar 20 2015 *)
    LinearRecurrence[{17,-100,308,-574,686,-532,260,-73,9},{1,8,-47,-1458,-9823,-19076,251505,3959426,40949569},20] (* Harvey P. Dale, Mar 23 2018 *)
  • PARI
    Vec(-(10*x^8+1071*x^7+10627*x^6+20497*x^5+8373*x^4-167*x^3-83*x^2-9*x+1)/((x-1)^8*(9*x-1)) + O(x^100)) \\ Colin Barker, Mar 20 2015

Formula

G.f.: -(10*x^8+1071*x^7+10627*x^6+20497*x^5+8373*x^4-167*x^3-83*x^2-9*x+1) / ((x-1)^8*(9*x-1)). - Colin Barker, Mar 20 2015
a(n) = A001019(n) - A001015(n). - Michel Marcus, Mar 20 2015

A038488 Sums of 3 distinct powers of 9.

Original entry on oeis.org

91, 739, 811, 819, 6571, 6643, 6651, 7291, 7299, 7371, 59059, 59131, 59139, 59779, 59787, 59859, 65611, 65619, 65691, 66339, 531451, 531523, 531531, 532171, 532179, 532251, 538003, 538011, 538083, 538731, 590491, 590499, 590571, 591219, 597051, 4782979, 4783051
Offset: 1

Views

Author

Keywords

Crossrefs

Base-9 interpretation of A038445.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[9^Range[0, 6], {3}]] (* Amiram Eldar, Jul 14 2022 *)
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A038488(n): return 9**((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+9**((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+9**(m+t+1) # Chai Wah Wu, Apr 05 2025

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A038489 Sums of 4 distinct powers of 9.

Original entry on oeis.org

820, 6652, 7300, 7372, 7380, 59140, 59788, 59860, 59868, 65620, 65692, 65700, 66340, 66348, 66420, 531532, 532180, 532252, 532260, 538012, 538084, 538092, 538732, 538740, 538812, 590500, 590572, 590580, 591220, 591228, 591300, 597052, 597060, 597132, 597780, 4783060
Offset: 1

Views

Author

Keywords

Crossrefs

Base-9 interpretation of A038446.

Programs

  • Mathematica
    Sort[Plus @@@ Subsets[9^Range[0, 6], {4}]] (* Amiram Eldar, Jul 14 2022 *)
  • Python
    from itertools import islice
    def A038489_gen(): # generator of terms
        yield int(bin(n:=15)[2:],9)
        while True: yield int(bin((n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b))[2:],9)
    A038489_list = list(islice(A038489_gen(),30)) # Chai Wah Wu, Apr 05 2025

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A055995 a(n) = 64*9^(n-2), a(0)=1, a(1)=7.

Original entry on oeis.org

1, 7, 64, 576, 5184, 46656, 419904, 3779136, 34012224, 306110016, 2754990144, 24794911296, 223154201664, 2008387814976, 18075490334784, 162679413013056, 1464114717117504, 13177032454057536, 118593292086517824
Offset: 0

Views

Author

Barry E. Williams, Jun 04 2000

Keywords

Comments

For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8,9} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8,9} we have f(x_1)<>y_1 and f(x_2)<> y_2. - Milan Janjic, Apr 19 2007
a(n) is the number of generalized compositions of n when there are 8*i-1 different types of i, (i=1,2,...). - Milan Janjic, Aug 26 2010

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Second differences of 9^n (A001019). Cf. A055275.

Formula

a(n) = 9a(n-1) + ((-1)^n)*C(2, 2-n).
G.f.: (1-x)^2/(1-9x).
a(n) = Sum_{k, 0<=k<=n} A201780(n,k)*7^k. - Philippe Deléham, Dec 05 2011
Previous Showing 71-80 of 117 results. Next