A346460
Square array read by downward antidiagonals in which row n lists all numbers k for which all positive integers cannot be colored with two colors without any positive integer x being the same color as n*x or k*x (for n >= 2).
Original entry on oeis.org
4, 16, 9, 64, 81, 2, 256, 729, 8, 25, 1024, 6561, 16, 625, 36, 4096, 59049, 32, 15625, 1296, 49, 16384, 531441, 128, 390625, 46656, 2401, 4, 65536, 4782969, 256, 9765625, 1679616, 117649, 16, 3, 262144, 43046721, 512, 244140625, 60466176, 5764801, 64, 27, 100
Offset: 2
Table begins:
4, 16, 64, 256, 1024, 4096, 16384, ...
9, 81, 729, 6561, 59049, 531441, 4782969, ...
2, 8, 16, 32, 128, 256, 512, ...
25, 625, 15625, 390625, 9765625, 244140625, 6103515625, ...
36, 1296, 46656, 1679616, 60466176, 2176782336, 7836416409, ...
49, 2401, 117649, 5764801, 282475249, 13841287201, 678223072849, ...
4, 16, 64, 256, 1024, 4096, 16384, ...
3, 27, 81, 243, 2187, 6561, 19683, ...
100, 10000, 1000000, 100000000, 10000000000, 1000000000000, 100000000000000, ...
A013615
Triangle of coefficients in expansion of (1+8x)^n.
Original entry on oeis.org
1, 1, 8, 1, 16, 64, 1, 24, 192, 512, 1, 32, 384, 2048, 4096, 1, 40, 640, 5120, 20480, 32768, 1, 48, 960, 10240, 61440, 196608, 262144, 1, 56, 1344, 17920, 143360, 688128, 1835008, 2097152, 1, 64, 1792, 28672, 286720, 1835008, 7340032, 16777216, 16777216
Offset: 0
-
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+8*x)^n):
seq(T(n), n=0..10); # Alois P. Heinz, Jul 25 2015
A013791
a(n) = 9^(4*n + 3).
Original entry on oeis.org
729, 4782969, 31381059609, 205891132094649, 1350851717672992089, 8862938119652501095929, 58149737003040059690390169, 381520424476945831628649898809, 2503155504993241601315571986085849, 16423203268260658146231467800709255289
Offset: 0
A014393
Final 2 digits of 9^n.
Original entry on oeis.org
1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89, 1, 9, 81, 29, 61, 49, 41, 69, 21, 89
Offset: 0
-
[Modexp(9, n, 100): n in [0..110]]; // Vincenzo Librandi, Aug 16 2016
-
seq(9^n mod 100, n=0..80); # Martin Renner, Jun 11 2020
-
Flatten[Prepend[FromDigits[Take[IntegerDigits[#],-2]]&/@(9^Range[2,60]),{1,9}]] (* Harvey P. Dale, Jan 22 2011 *)
PowerMod[9, Range[0, 80], 100] (* Vincenzo Librandi, Aug 16 2016 *)
-
a(n) = lift(Mod(9, 100)^n); \\ Michel Marcus, Aug 16 2016
A024103
a(n) = 9^n - n^2.
Original entry on oeis.org
1, 8, 77, 720, 6545, 59024, 531405, 4782920, 43046657, 387420408, 3486784301, 31381059488, 282429536337, 2541865828160, 22876792454765, 205891132094424, 1853020188851585, 16677181699666280, 150094635296998797
Offset: 0
Cf. similar sequences listed in
A024025.
-
[9^n-n^2: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
-
Table[9^n - n^2, {n, 0, 25}] (* or *) CoefficientList[Series[(1 - 4 x + 11 x^2 + 8 x^3)/((1 - 9 x) (1 - x)^3), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 06 2014 *)
A024105
a(n) = 9^n - n^4.
Original entry on oeis.org
1, 8, 65, 648, 6305, 58424, 530145, 4780568, 43042625, 387413928, 3486774401, 31381044968, 282429515745, 2541865799768, 22876792416545, 205891132044024, 1853020188786305, 16677181699583048, 150094635296894145
Offset: 0
-
[9^n-n^4: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
-
Table[9^n-n^4,{n,0,25}] (* or *) LinearRecurrence[{14,-55,100,-95,46,-9},{1,8,65,648,6305,58424},30] (* Harvey P. Dale, Oct 07 2013 *)
A024108
a(n) = 9^n-n^7.
Original entry on oeis.org
1, 8, -47, -1458, -9823, -19076, 251505, 3959426, 40949569, 382637520, 3476784401, 31361572438, 282393704673, 2541803079812, 22876687041457, 205890961235274, 1853019920416385, 16677181289327896, 150094634684779089, 1350851716779120350
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (17,-100,308,-574,686,-532,260,-73,9).
-
[9^n-n^7: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
-
Table[9^n - n^7, {n, 0, 19}] (* Michael De Vlieger, Mar 20 2015 *)
LinearRecurrence[{17,-100,308,-574,686,-532,260,-73,9},{1,8,-47,-1458,-9823,-19076,251505,3959426,40949569},20] (* Harvey P. Dale, Mar 23 2018 *)
-
Vec(-(10*x^8+1071*x^7+10627*x^6+20497*x^5+8373*x^4-167*x^3-83*x^2-9*x+1)/((x-1)^8*(9*x-1)) + O(x^100)) \\ Colin Barker, Mar 20 2015
A038488
Sums of 3 distinct powers of 9.
Original entry on oeis.org
91, 739, 811, 819, 6571, 6643, 6651, 7291, 7299, 7371, 59059, 59131, 59139, 59779, 59787, 59859, 65611, 65619, 65691, 66339, 531451, 531523, 531531, 532171, 532179, 532251, 538003, 538011, 538083, 538731, 590491, 590499, 590571, 591219, 597051, 4782979, 4783051
Offset: 1
-
Sort[Plus @@@ Subsets[9^Range[0, 6], {3}]] (* Amiram Eldar, Jul 14 2022 *)
-
from math import isqrt, comb
from sympy import integer_nthroot
def A038488(n): return 9**((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+9**((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+9**(m+t+1) # Chai Wah Wu, Apr 05 2025
A038489
Sums of 4 distinct powers of 9.
Original entry on oeis.org
820, 6652, 7300, 7372, 7380, 59140, 59788, 59860, 59868, 65620, 65692, 65700, 66340, 66348, 66420, 531532, 532180, 532252, 532260, 538012, 538084, 538092, 538732, 538740, 538812, 590500, 590572, 590580, 591220, 591228, 591300, 597052, 597060, 597132, 597780, 4783060
Offset: 1
-
Sort[Plus @@@ Subsets[9^Range[0, 6], {4}]] (* Amiram Eldar, Jul 14 2022 *)
-
from itertools import islice
def A038489_gen(): # generator of terms
yield int(bin(n:=15)[2:],9)
while True: yield int(bin((n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b))[2:],9)
A038489_list = list(islice(A038489_gen(),30)) # Chai Wah Wu, Apr 05 2025
A055995
a(n) = 64*9^(n-2), a(0)=1, a(1)=7.
Original entry on oeis.org
1, 7, 64, 576, 5184, 46656, 419904, 3779136, 34012224, 306110016, 2754990144, 24794911296, 223154201664, 2008387814976, 18075490334784, 162679413013056, 1464114717117504, 13177032454057536, 118593292086517824
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Comments