cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A038493 Sums of 3 distinct powers of 12.

Original entry on oeis.org

157, 1741, 1873, 1884, 20749, 20881, 20892, 22465, 22476, 22608, 248845, 248977, 248988, 250561, 250572, 250704, 269569, 269580, 269712, 271296, 2985997, 2986129, 2986140, 2987713, 2987724, 2987856, 3006721, 3006732, 3006864, 3008448, 3234817, 3234828, 3234960
Offset: 1

Views

Author

Keywords

Crossrefs

Base-12 interpretation of A038445.

Programs

  • Mathematica
    Union[Total/@Subsets[12^Range[0,6],{3}]] (* Harvey P. Dale, Sep 06 2012 *)
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A038493(n): return 12**((r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+12**((a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1))+12**(m+t+1) # Chai Wah Wu, Apr 04 2025

Extensions

Offset corrected by Amiram Eldar, Jul 14 2022

A117962 Partial sums of hexagonal numbers with prime indices.

Original entry on oeis.org

6, 21, 66, 157, 388, 713, 1274, 1977, 3012, 4665, 6556, 9257, 12578, 16233, 20604, 26169, 33072, 40453, 49364, 59375, 69960, 82363, 96058, 111811, 130532, 150833, 171948, 194739, 218392, 243817, 275948, 310139, 347540, 386043, 430296, 475747
Offset: 1

Views

Author

Jonathan Vos Post, Apr 05 2006

Keywords

Comments

There are no prime hexagonal numbers. The n-th hexagonal number A000384(n) = n*(2*n-1) is semiprime iff both n and 2*n-1 are prime iff A000384(n) is an element of A001358 iff n is an element of A005382.

Examples

			a(4) = hexagonal(2) + hexagonal(3) + hexagonal(5) + hexagonal(7) = 6 + 15 + 45 + 91 = 157 is prime.
a(12) = 6 + 15 + 45 + 91 + 231 + 325 + 561 + 703 + 1035 + 1653 + 1891 + 2701 = 9257 is prime.
a(26) = 150833 is prime.
		

Crossrefs

See also: A034953 Triangular numbers (A000217) with prime indices. A001248 Squares of primes. A116995 Pentagonal numbers with prime indices. A000384 Hexagonal numbers: n(2n-1). A117961 Hexagonal numbers with prime indices. A117965 Prime partial sums of hexagonal numbers with prime indices.

Programs

  • Mathematica
    Accumulate[Table[n(2n-1),{n,Prime[Range[50]]}]] (* Harvey P. Dale, Jan 30 2014 *)

Formula

a(n) = SUM[i=1..n] A117961(i). a(n) = SUM[i=1..n] A000040(i)*(2*A000040(i)-1). a(n) = SUM[i=1..n] A000384(prime(n)). a(n) = Partial sum of number of divisors of 12^(prime(n)-1) = SUM[i=1..n] A000005(A001021(A000040(n)-1)).

A180691 Smallest power of 12 that begins with n.

Original entry on oeis.org

1, 20736, 35831808, 429981696, 5159780352, 61917364224, 743008370688, 8916100448256, 953962166440690129601298432, 106993205379072, 11447545997288281555215581184, 12, 137370551967459378662586974208, 144, 15407021574586368, 1648446623609512543951043690496
Offset: 1

Views

Author

Daniel Mondot, Sep 17 2010

Keywords

Crossrefs

Programs

  • Mathematica
    tlv=12^Range[0,40]; f[n_]:=Module[{idn=IntegerDigits[n],len}, len=Length[idn]; First[Select[tlv, Take[IntegerDigits[#],len]==idn&]]]; Table[f[i],{i,20}]//Quiet  (* Harvey P. Dale, Feb 14 2011 *)

Extensions

More terms from Harvey P. Dale, Feb 14 2011

A196791 a(n) = A047848(9, n).

Original entry on oeis.org

1, 2, 14, 158, 1886, 22622, 271454, 3257438, 39089246, 469070942, 5628851294, 67546215518, 810554586206, 9726655034462, 116719860413534, 1400638324962398, 16807659899548766, 201691918794585182, 2420303025535022174, 29043636306420266078, 348523635677043192926
Offset: 0

Views

Author

Vincenzo Librandi, Oct 11 2011

Keywords

Crossrefs

Cf. A001021 (first differences).

Programs

  • Magma
    [(12^n+10)/11: n in [0..20]];
    
  • Mathematica
    LinearRecurrence[{13,-12},{1,2},30] (* Harvey P. Dale, Sep 07 2015 *)
    (12^Range[0,40] +10)/11 (* G. C. Greubel, Jan 17 2025 *)
  • Python
    def A196791(n): return (pow(12, n) + 10)//11
    print([A196791(n) for n in range(41)]) # G. C. Greubel, Jan 17 2025

Formula

a(n) = (12^n + 10)/11.
a(n) = 12*a(n-1) - 10, with a(0) = 1.
G.f.: (1-11*x)/((1-x)*(1-12*x)). - Bruno Berselli, Oct 11 2011
From Elmo R. Oliveira, Aug 30 2024: (Start)
E.g.f.: exp(x)*(exp(11*x) + 10)/11.
a(n) = 13*a(n-1) - 12*a(n-2) for n > 1. (End)

A013618 Triangle of coefficients in expansion of (1+11x)^n.

Original entry on oeis.org

1, 1, 11, 1, 22, 121, 1, 33, 363, 1331, 1, 44, 726, 5324, 14641, 1, 55, 1210, 13310, 73205, 161051, 1, 66, 1815, 26620, 219615, 966306, 1771561, 1, 77, 2541, 46585, 512435, 3382071, 12400927, 19487171, 1, 88, 3388, 74536, 1024870, 9018856, 49603708, 155897368, 214358881
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,11} having n-k zeros. - Milan Janjic, Jul 24 2015

Crossrefs

Cf. A001020 (right edge).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+11*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015

Formula

G.f.: 1 / (1 - x(1+11y)).
T(n,k) = 11^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*10^(n-i). Row sums are 12^n = A001021. - Mircea Merca, Apr 28 2012

A013797 a(n) = 12^(4*n + 3).

Original entry on oeis.org

1728, 35831808, 743008370688, 15407021574586368, 319479999370622926848, 6624737266949237011120128, 137370551967459378662586974208, 2848515765597237675947403497177088, 59066822915424320448445358917464096768
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001021.

Programs

  • Magma
    [12^(4*n+3): n in [0..10]]; // Vincenzo Librandi, Jun 28 2011
  • Mathematica
    12^(4*Range[0,20]+3) (* or *) NestList[20736#&,1728,20] (* Harvey P. Dale, Apr 29 2012 *)

Formula

a(n) = 20736*a(n-1); a(0) = 1728. - Harvey P. Dale, Apr 29 2012

A021724 Expansion of 1/((1-x)(1-3x)(1-10x)(1-12x)).

Original entry on oeis.org

1, 26, 465, 7150, 101621, 1378026, 18123145, 233349350, 2958918141, 37094306626, 461004657425, 5690785933950, 69876732453061, 854393804284826, 10411455807073305, 126524771262956950, 1534170271000826381
Offset: 0

Views

Author

Keywords

Comments

From Bruno Berselli, May 08 2013: (Start)
Naturally, the sequence is related to:
A018207, 1/((1-3x)(1-10x)(1-12x)): A018207(n) = a(n)-a(n-1), n>0;
A016267, 1/((1-x)(1-10x)(1-12x)): A016267(n) = a(n)-3*a(n-1), n>0;
A016217, 1/((1-x)(1-3x)(1-12x)): A016217(n) = a(n)-10*a(n-1), n>0;
A016215, 1/((1-x)(1-3x)(1-10x)): A016215(n) = a(n)-12*a(n-1), n>0;
A016196, 1/((1-10x)(1-12x)): A016196(n) = a(n)-4*a(n-1)+3*a(n-2), n>1;
A016147, 1/((1-3x)(1-12x)): A016147(n) = a(n)-11*a(n-1)+10*a(n-2), n>1;
A016145, 1/((1-3x)(1-10x)): A016145(n) = a(n)-13*a(n-1)+12*a(n-2), n>1;
A016125, 1/((1-x)(1-12x)): A016125(n) = a(n)-13*a(n-1)+30*a(n-2), n>1;
A002275, x/((1-x)(1-10x)): A002275(n) = a(n-1)-15*a(n-2)+36*a(n-3), n>2;
A003462, x/((1-x)(1-3x)): A003462(n) = a(n-1)-22*a(n-2)+120*a(n-3), n>2;
A000012, 1/(1-x): A000012(n) = a(n)-25*a(n-1)+186*a(n-2)-360*a(n-3), n>2;
A000244, 1/(1-3x): A000244(n) = a(n)-23*a(n-1)+142*a(n-2)-120*a(n-3), n>2;
A011557, 1/(1-10x): A011557(n) = a(n)-16*a(n-1)+51*a(n-2)-36*a(n-3), n>2;
A001021, 1/(1-12x): A001021(n) = a(n)-14*a(n-1)+43*a(n-2)-30*a(n-3), n>2. (End)

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-10*x)*(1-12*x)))); // Bruno Berselli, May 07 2013
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - 3 x) (1 - 10 x) (1 - 12 x)), {x, 0, 20}], x] (* Bruno Berselli, May 07 2013 *)
    LinearRecurrence[{26,-211,546,-360},{1,26,465,7150},120] (* Harvey P. Dale, Jul 06 2019 *)
  • PARI
    Vec(1/((1-x)*(1-3*x)*(1-10*x)*(1-12*x))+O(x^20)) \\ Bruno Berselli, May 07 2013
    

Formula

G.f.: 1/((1-x)*(1-3*x)*(1-10*x)*(1-12*x)).
a(n) = -1/198 +3^(n+1)/14 -2^(n+2)*5^(n+3)/63 +2^(2n+5)*3^(n+1)/11. [Bruno Berselli, May 07 2013]

A038335 Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*9^j.

Original entry on oeis.org

1, 12, 9, 144, 216, 81, 1728, 3888, 2916, 729, 20736, 62208, 69984, 34992, 6561, 248832, 933120, 1399680, 1049760, 393660, 59049, 2985984, 13436928, 25194240, 25194240, 14171760, 4251528, 531441, 35831808, 188116992, 423263232
Offset: 0

Views

Author

Keywords

Examples

			       1
      12        9
     144      216       81
    1728     3888     2916      729
   20736    62208    69984    34992     6561
  248832   933120  1399680  1049760   393660    59049
 2985984 13436928 25194240 25194240 14171760  4251528   531441
		

References

  • B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.

Crossrefs

Cf. A009965 (row sums), A001021 (column 0), A001019 (diagonal)

Programs

  • Maple
    A038335 := proc(i,j)
        binomial(i,j)*12^(i-j)*9^j ;
    end proc: # R. J. Mathar, Nov 22 2022
  • Mathematica
    Flatten[Table[Binomial[i,j]12^(i-j) 9^j,{i,0,10},{j,0,i}]] (* Harvey P. Dale, Oct 17 2013 *)

A156330 Numerator of Euler(n, 1/12).

Original entry on oeis.org

1, -5, -11, 415, 1705, -120125, -737891, 73544935, 602197585, -77251102325, -790660144571, 123981052932655, 1522721707926265, -282190333761783725, -4043468004740204051, 864617687280807347575, 14158848206836206915745, -3431276846283480837508325
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

Crossrefs

For denominators see A001021.

Programs

  • Mathematica
    Numerator[EulerE[Range[0,20],1/12]] (* Vincenzo Librandi, May 05 2012 *)

Formula

G.f.: conjecture T(0)/(1+5*x), where T(k) = 1 - 36*x^2*(k+1)^2/(36*x^2*(k+1)^2 + (1+5*x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 12 2013
a(n) = (-6)^n*skp(n, 5/6), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014

A156332 Numerator of Euler(n, 5/12).

Original entry on oeis.org

1, -1, -35, 107, 6265, -32041, -2749355, 19696067, 2247032305, -20698163281, -2950725914675, 33220406931227, 5682862415856745, -75612617322835321, -15090424387627057595, 231673592430307689587, 52841539466887256047585, -919407851749260210944161
Offset: 0

Views

Author

N. J. A. Sloane, Nov 07 2009

Keywords

Crossrefs

For denominators see A001021.

Programs

  • Mathematica
    Numerator[EulerE[Range[0,20],5/12]] (* Vincenzo Librandi, May 05 2012 *)

Formula

a(n) = a(n) = (-6)^n*skp(n, 1/6), where skp(n,x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 19 2014
Previous Showing 31-40 of 58 results. Next