cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 721 results. Next

A073377 Seventh convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 8, 52, 264, 1194, 4872, 18516, 66264, 226083, 740608, 2344232, 7202416, 21562164, 63090288, 180884088, 509245776, 1410356133, 3848340312, 10359516684, 27544099704, 72406891326, 188356187448
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Eighth (m=7) column of triangle A073370.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^8 )); // G. C. Greubel, Sep 29 2022
    
  • Mathematica
    Table[(2^(n+8)*(9539600 +17240268*n +11555460*n^2 +3849489*n^3 +703080*n^4 +71442*n^5 +3780*n^6 +81*n^7) +(-1)^n*(236325040 +225702732*n +87290028*n^2 +17880849*n^3 +2109240*n^4 +144018*n^5 +5292*n^6 +81*n^7))/(7!*3^12), {n,0,60}] (* G. C. Greubel, Sep 29 2022 *)
  • SageMath
    def A073377(n): return (2^(n+8)*(9539600 +17240268*n +11555460*n^2 +3849489*n^3 +703080*n^4 +71442*n^5 +3780*n^6 +81*n^7) +(-1)^n*(236325040 +225702732*n +87290028*n^2 +17880849*n^3 +2109240*n^4 +144018*n^5 +5292*n^6 +81*n^7))/(factorial(7)*3^12)
    [A073377(n) for n in range(40)] # G. C. Greubel, Sep 29 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073376(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+7, 7) * binomial(n-k, k) * 2^k.
a(n) = ((328247920 +332102604*n +131833680*n^2 +26450901*n^3 +2844099*n^4 + 156087*n^5 +3429*n^6)*(n+1)*U(n+1) + 2(141143240 +150941694*n +62335731*n^2 + 12873492*n^3 +1414314*n^4 +78894*n^5 +1755*n^6)*(n+2)*U(n))/(7!*3^11) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^8 = 1/((1+x)*(1-2*x))^8.
E.g.f.: (1/(7!*3^12))*( 4096*(596225 +4177950*x +7304850*x^2 +5109300*x^3 +1691550*x^4 +278964*x^5 +21924*x^6 +648*x^7)*exp(2*x) + (236325040 -333132240*x +158026680*x^2 -34637400*x^3 +3921750*x^4 -234738*x^5 +6993*x^6 -81*x^7)*exp(-x) ). - G. C. Greubel, Sep 29 2022

A073378 Eighth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 9, 63, 345, 1665, 7227, 29073, 109791, 394020, 1354210, 4486482, 14397318, 44932446, 136817370, 407566350, 1190446866, 3415935699, 9645169743, 26836557825, 73670997015, 199751003991, 535449185469
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n) with U(n) = A001045(n+1) see A073370 and the row polynomials of triangles A073399 and A073400.

Crossrefs

Ninth (m=8) column of triangle A073370.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^9 )); // G. C. Greubel, Oct 01 2022
    
  • Mathematica
    CoefficientList[Series[1/((1+x)*(1-2*x))^9, {x,0,40}], x] (* G. C. Greubel, Oct 01 2022 *)
  • SageMath
    def A073378_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*(1-2*x))^9 ).list()
    A073378_list(40) # G. C. Greubel, Oct 01 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073377(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+8, 8) * binomial(n-k, k) * 2^k.
G.f.: 1/(1-(1+2*x)*x)^9 = 1/((1+x)*(1-2*x))^9.

A073402 Coefficient triangle of polynomials (rising powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073401.

Original entry on oeis.org

2, 33, 9, 831, 396, 45, 28236, 18297, 3744, 243, 1210140, 968679, 273483, 32481, 1377, 62686440, 58920534, 20681811, 3418767, 268029, 8019, 3810867480, 4075425738, 1683064737, 347584284, 38186478, 2130138, 47385
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k)), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A073401(k,m).

Examples

			k=2: U2(n)=((30+9*n)*(n+1)*U0(n+1)+(33+9*n)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 33,9; 831,396,45; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: p(k, n)= (n+2)*p(k-1, n+1)+4*(n+2*(k+1))*p(k-1, n)+2*(n+3)*q(k-1, n+1); q(k, n)= (n+1)*p(k-1, n+1)+4*(n+2*(k+1))*q(k-1, n), k >= 1. [Corrected by Sean A. Irvine, Nov 25 2024]

A081857 Jacobsthal sequence (A001045) as represented in base 4.

Original entry on oeis.org

0, 1, 1, 3, 11, 23, 111, 223, 1111, 2223, 11111, 22223, 111111, 222223, 1111111, 2222223, 11111111, 22222223, 111111111, 222222223, 1111111111, 2222222223, 11111111111, 22222222223, 111111111111, 222222222223, 1111111111111
Offset: 0

Views

Author

Matthew Vandermast, Apr 11 2003

Keywords

Examples

			a(8)= 1111 because A001045(8)= 85 (in base 10) = 64 + 16 + 4 + 1 = 1 * (4^3) + 1 * (4^2) + 1 * (4^1) + 1.
		

Crossrefs

Cf. A002450.

Programs

  • Python
    from gmpy2 import digits
    def A081857(n): return int(digits(((1<Chai Wah Wu, Apr 18 2025

Formula

For n > 0, a(2n) is represented as a string of n 1's and a(2n+1) as a string of (n-1) 2's followed by a 3.

A091084 a(n) = A001045(n) mod 10.

Original entry on oeis.org

0, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5, 1, 1, 3, 5
Offset: 0

Views

Author

Paul Barry, Dec 18 2003

Keywords

Comments

A001045(0), followed by A001045(1), A001045(2), A001045(3), A001045(4) repeating.
Decimal expansion of 227/19998. - Elmo R. Oliveira, May 11 2024

Crossrefs

Cf. A001045.

Programs

  • Mathematica
    CoefficientList[Series[x (1+x+3x^2+5x^3)/(1-x^4), {x,0,150}], x]  (* Harvey P. Dale, Mar 26 2011 *)

Formula

G.f.: x*(1+x+3x^2+5x^3)/(1-x^4); e.g.f.: 2*cos(x) - sin(x) + exp(-x)/2 + 5*exp(x)/2 - 5; a(n) = 2*cos(Pi*n/2) - sin(Pi*n/2) + (-1)^n/2 + 5/2 - 5*0^n.
a(n) = a(n-4) for n > 4. - Elmo R. Oliveira, May 11 2024

A102563 a(n) = A000120(A001045(n)) - A001045(A000120(n)).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 1, 3, 4, 4, 3, 5, 4, 4, 3, 7, 8, 8, 7, 9, 8, 8, 7, 11, 10, 10, 9, 11, 10, 10, 5, 15, 16, 16, 15, 17, 16, 16, 15, 19, 18, 18, 17, 19, 18, 18, 13, 23, 22, 22, 21, 23, 22, 22, 17, 25, 24, 24, 19, 25, 20, 20, 11, 31, 32, 32, 31, 33, 32, 32, 31, 35, 34, 34, 33, 35, 34
Offset: 0

Views

Author

Paul Barry, Jan 14 2005

Keywords

Crossrefs

Programs

  • Mathematica
    j[n_] := (2^n - (-1)^n)/3; s[n_] := DigitCount[n, 2, 1]; a[n_] := s[j[n]] - j[s[n]]; Array[a, 100, 0] (* Amiram Eldar, Jul 22 2023 *)

Formula

It would appear that a(2^(n+1)) = A000225(n).
a(2^(n+1)-1) = A001045(n).
a(2^(n+1)+1) = A000079(n).
a(2n+1) = n; a(4n+1) - a(2n+1) = n; a(8n+1) - a(4n+1) = 2n; a(8n+1) - a(2n+1) = 3n.

A108924 J(n)^2+J(n+1)^2, with J(n) the Jacobsthal number A001045(n).

Original entry on oeis.org

1, 2, 10, 34, 146, 562, 2290, 9074, 36466, 145522, 582770, 2329714, 9321586, 37280882, 149134450, 596515954, 2386107506, 9544342642, 38177545330, 152709831794, 610840026226, 2443358706802, 9773437623410, 39093744901234
Offset: 0

Views

Author

Paul Barry, Jul 17 2005

Keywords

Programs

  • Mathematica
    Total/@Partition[LinearRecurrence[{1,2},{0,1},40]^2,2,1] (* or *) LinearRecurrence[ {3,6,-8},{1,2,10},40] (* Harvey P. Dale, Apr 11 2013 *)
  • Python
    def A108924(n): return (((1<Chai Wah Wu, Apr 18 2025

Formula

G.f.: (1-x-2x^2)/((1-x)(1-4x)(1+2x)); a(n)=3a(n-1)+6a(n-2)-8a(n-3); a(n)=(5/9)4^n+(2/9)(-2)^n+2/9.
a(0)=1, a(1)=2, a(2)=10, a(n)=3*a(n-1)+6*a(n-2)-8*a(n-3). - Harvey P. Dale, Apr 11 2013

A114283 Sequence array for binomial transform of Jacobsthal numbers A001045(n+1).

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 18, 6, 2, 1, 54, 18, 6, 2, 1, 162, 54, 18, 6, 2, 1, 486, 162, 54, 18, 6, 2, 1, 1458, 486, 162, 54, 18, 6, 2, 1, 4374, 1458, 486, 162, 54, 18, 6, 2, 1, 13122, 4374, 1458, 486, 162, 54, 18, 6, 2, 1, 39366, 13122, 4374, 1458, 486, 162, 54, 18, 6, 2, 1
Offset: 0

Views

Author

Paul Barry, Nov 20 2005

Keywords

Comments

Sequence array for A025192. Row sums are 3^n, A000244. Diagonal sums are A015518(n+1). Inverse is A114284.

Examples

			Triangle begins
1;
2,1;
6,2,1;
18,6,2,1;
54,18,6,2,1;
162,54,18,6,2,1;
		

Programs

  • Haskell
    a114283 n k = a114283_tabl !! n !! k
    a114283_row n = a114283_tabl !! n
    a114283_tabl = iterate
       (\row -> (sum $ zipWith (+) row $ reverse row) : row) [1]
    -- Reinhard Zumkeller, Nov 27 2012

Formula

Riordan array ((1-x)/(1-3x), x).

A123638 Consider the 2^n compositions of n and count only those ending in an odd part with row sum A001045.

Original entry on oeis.org

1, 1, 3, 8, 25, 83, 299, 1158, 4813, 21373, 100955, 504916, 2662761, 14754311, 85643459, 519493938, 3285790317, 21628225041, 147887079907, 1048634836288, 7698589399833, 58432476430139, 457901993065915, 3700291495531166
Offset: 1

Views

Author

Alford Arnold, Oct 04 2006

Keywords

Comments

Compositions ending in an even part yield sequence 0 1 2 6 18 ... A123639. and a(n)+A123639(n) = A047970(n). Ending parity of compositions can be detected using mod(A065120,2)

Examples

			4
31 32 33
211 221 222
1111
Consider the above multisets: permute and note the parity of the ending part of each of the 14 compositions.
4
31 13 32 23 33
211 121 112 221 212 122 222
1111
4 is even
31 13 23 and 33 are odd
32 is even
etc
there are 0 + 4 + 3 + 1 = 8 odd compositions therefore a(4)=8.
		

Crossrefs

Programs

  • Maple
    g:= proc(b,t,l,m) option remember; if t=0 then b*l else add (g(b, t-1, irem(k, 2), m), k=1..m-1) +g(1, t-1, irem(m, 2), m) fi end: a:= n-> add (g(0, k, 0, n+1-k), k=1..n): seq (a(n), n=1..30);
  • Mathematica
    g[b_, t_, l_, m_] := g[b, t, l, m] = If[t == 0 , b*l , Sum[g[b, t-1, Mod[k, 2], m], {k, 1, m-1}] + g[1, t-1, Mod[m, 2], m]]; a[n_] := Sum[g[0, k, 0, n+1-k], {k, 1, n}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 04 2013, translated from Alois P. Heinz's Maple program *)

Extensions

Offset corrected, Maple program and more terms added by Alois P. Heinz, Nov 06 2009

A129362 a(n) = Sum_{k=floor((n+1)/2)..n} J(k+1), J(k) = A001045(k).

Original entry on oeis.org

1, 1, 4, 8, 19, 37, 80, 160, 331, 661, 1344, 2688, 5419, 10837, 21760, 43520, 87211, 174421, 349184, 698368, 1397419, 2794837, 5591040, 11182080, 22366891, 44733781, 89473024, 178946048, 357903019, 715806037
Offset: 0

Views

Author

Paul Barry, Apr 11 2007

Keywords

Crossrefs

Programs

  • Magma
    A001045:= func< n | (2^n - (-1)^n)/3 >;
    [(&+[A001045(n-j+1): j in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    LinearRecurrence[{1,3,-1,0,-2,-4},{1,1,4,8,19,37},30] (* Harvey P. Dale, Oct 22 2011 *)
  • SageMath
    def A001045(n): return (2^n - (-1)^n)/3
    def A129362(n): return sum(A001045(n-j+1) for j in range(1+(n//2)))
    [A129362(n) for n in range(31)] # G. C. Greubel, Jan 31 2024

Formula

G.f.: (1+2*x^3)/((1-x-2*x^2)*(1-x^2-2*x^4)).
a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 2*a(n-5) - 4*a(n-6).
a(n) = Sum_{k=0..n} ( J(k+1) - J((k+1)/2)*(1-(-1)^k)/2 ).
a(n) = Sum_{j=0..floor(n/2)} A001045(n-j+1). - G. C. Greubel, Jan 31 2024
Previous Showing 41-50 of 721 results. Next