cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A084069 Numbers k such that 7*k^2 = floor(k*sqrt(7)*ceiling(k*sqrt(7))).

Original entry on oeis.org

1, 3, 17, 48, 271, 765, 4319, 12192, 68833, 194307, 1097009, 3096720, 17483311, 49353213, 278635967, 786554688, 4440692161, 12535521795, 70772438609, 199781794032, 1127918325583, 3183973182717, 17975920770719, 50743789129440
Offset: 1

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

This is a strong divisibility sequence, that is, GCD(a(n),a(m)) = a(GCD(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Sep 01 2019

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+3x+x^2)/(1-16x^2+x^4),{x,0,30}],x] (* or *) LinearRecurrence[{0,16,0,-1},{1,3,17,48},31] (* Harvey P. Dale, Oct 31 2011 *)

Formula

a(1)=1, a(2)=3, a(2n) = 6*a(2n-1)-a(2n-2); a(2n+1) = 3*a(2n)-a(2n-1).
a(n)*a(n+3) = -3 + a(n+1)*a(n+2).
G.f.: x*(1+3*x+x^2)/(1-16*x^2+x^4). [corrected by Harvey P. Dale, Oct 31 2011]
a(n) = 16*a(n-2) - a(n-4), n > 4. - Harvey P. Dale, Oct 31 2011
a(n) = U_n(sqrt(18),1) = (alpha^n - beta^n)/(alpha - beta) for n odd and a(n) = 3*U_n(sqrt(18),1) = (sqrt(2)/2)*(alpha^n - beta^n)/(alpha - beta) for n even, where U_n(sqrt(R),Q) denotes the Lehmer sequence with parameters R and Q and alpha = (sqrt(3) + sqrt(14))/2 and beta = (sqrt(3) - sqrt(14))/2. - Peter Bala, Sep 01 2019

A053410 a(1) = 0, a(2) = 16, a(2n+1) = 10*a(2n) - a(2n-1), a(2n) = 10*a(2n-1) - a(2n-2) + 16.

Original entry on oeis.org

0, 16, 160, 1600, 15840, 156816, 1552320, 15366400, 152111680, 1505750416, 14905392480, 147548174400, 1460576351520, 14458215340816, 143121577056640, 1416757555225600, 14024453975199360, 138827782196768016
Offset: 1

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Jan 09 2000

Keywords

References

  • O. Bottema: Verscheidenheden XXVI. Het vraagstuk van Malfatti, Euclides 25 (1949-50), pp. 144-149. [in Dutch].
  • O. Bottema, The Malfatti problem (translation of Het vraagstuk van Malfatti), Forum Geom. 1 (2001) 43-50.

Crossrefs

Cf. A001078.

Programs

  • Magma
    I:=[0,16,160,1600]; [n le 4 select I[n] else 10*Self(n-1) - 10*Self(n-3) +Self(n-4): n in [1..30]]; // G. C. Greubel, May 25 2018
  • Mathematica
    LinearRecurrence[{10,0,-10,1}, {0,16,160,1600}, 50] (* G. C. Greubel, May 25 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(-16*x^2/((x-1)*(x+1)*(x^2-10*x+1)))) \\ G. C. Greubel, May 25 2018
    

Formula

a(n) = 10*a(n-1) - 10*a(n-3) + a(n-4).
G.f.: -16*x^2/((x-1)*(x+1)*(x^2-10*x+1)). - Colin Barker, Jun 24 2012

Extensions

More terms from James Sellers, Jan 10 2000

A278438 Numbers m such that T(m) + 2*T(m+1) is a square, where T = A000217.

Original entry on oeis.org

7, 799, 78407, 7683199, 752875207, 73774087199, 7229107670407, 708378777612799, 69413891098384007, 6801852948864019999, 666512175097575576007, 65311391306613542428799, 6399849835873029582446407, 627119972524250285537319199, 61451357457540654953074835207
Offset: 1

Views

Author

Bruno Berselli, Nov 23 2016

Keywords

Comments

It is well known that T(m) + k*T(m+1) is always a square for k=1. For k=3, the nonnegative values of m are the terms of A278310.
Square roots of T(m) + 2*T(m+1) are listed by A168520 (after 0).
Negative values of m for which T(m) + 2*T(m+1) is a square: -1, -2, -82, -7922, -776162, ...

Crossrefs

Subsequence of A056220.
Cf. A278310: numbers m such that T(m) + 3*T(m+1) is a square.

Programs

  • Magma
    Iv:=[7, 799]; [n le 2 select Iv[n] else 98*Self(n-1)-Self(n-2)+112: n in [1..20]];
    
  • Maple
    P:=proc(q) local n; for n from 1 to q do if type(sqrt((3*n^2+7*n+4)/2),integer) then print(n); fi; od; end: P(10^9); #  Paolo P. Lava, Nov 25 2016
  • Mathematica
    Table[((5 + 2 Sqrt[6])^(2 n) + (5 - 2 Sqrt[6])^(2 n))/12 - 7/6, {n, 1, 20}]
    RecurrenceTable[{a[1] == 7, a[2] == 799, a[n] == 98 a[n - 1] - a[n - 2] + 112}, a, {n, 1, 20}]
    LinearRecurrence[{99,-99,1},{7,799,78407},20] (* Harvey P. Dale, Oct 18 2024 *)
  • PARI
    Vec(x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)) + O(x^20)) \\ Colin Barker, Nov 27 2016
  • Sage
    def A278438():
        a, b = 7, 799
        yield a
        while True:
            yield b
            a, b = b, 98*b - a + 112
    a = A278438(); print([next(a) for  in range(15)]) # _Peter Luschny, Nov 24 2016
    

Formula

O.g.f.: x*(7 + 106*x - x^2)/((1 - x)*(1 - 98*x + x^2)).
E.g.f.: (exp((5-2*sqrt(6))^2*x) + exp((5+2*sqrt(6))^2*x) - 14*exp(x))/12 + 1.
a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>3.
a(n) = 98*a(n-1) - a(n-2) + 112 for n>2.
a(n) = a(-n) = ((5 + 2*sqrt(6))^(2*n) + (5 - 2*sqrt(6))^(2*n))/12 - 7/6.
a(n) = A001079(2*n)/6 - 7/6.
a(n) = 2*A001078(n)^2 - 1 = A122652(n)^2/2 - 1.
a(n) = -A278620(n+1) + 106*A278620(n) + 7*A278620(n-1).
Lim_{n -> infinity} a(n)/a(n-1) = (5 + 2*sqrt(6))^2.

A290284 Number of pairs of integers (x,y) satisfying the Diophantine equation x^2 - A000037(n)*y^2 = m such that x/y gives a convergent series towards sqrt(A000037(n)).

Original entry on oeis.org

3, 3, 5, 4, 5, 4, 7, 6, 5, 15, 8, 5, 9, 7, 12, 6, 10, 12, 9, 6, 11, 9, 12, 21, 7, 17, 9, 10, 11, 7, 13, 10, 9, 9, 19, 8, 20, 15, 13, 24, 12, 8, 15, 12, 16, 27, 16, 13, 9, 14, 27, 17, 12
Offset: 1

Views

Author

A.H.M. Smeets, Jul 25 2017

Keywords

Comments

If (x(0),y(0)) and (x(1),y(1)) are solutions of the Diophantine equation x^2 - A000037(n)*y^2 = m, then (x(i),y(i)) with x(i) = A*x(i-1) - x(i-2) and y(i) = A*y(i-1) - y(i-2) are also solutions for i > 1. The sequence represents the number of different integer pair sequences where in all cases A = 2*A033313(A000037(n)). Each contributing sequences has to satisfy the condition that for all x < x(i) and all y < y(i), |x/y - sqrt(A000037(n))| > |x(i)/y(i) - sqrt(A000037(n))|.
a(A000037(n)) is not equal to the number of all sequences of pairs (x(i),y(i)) that are solutions of a Diophantine equation x^2 - D*y^2 = m, with -D <= m < D and D = A000037(n). For example for D = 5 we obtain two other sequences from Fibonacci sequence: (first) x(i) = 2*Fib(6i)-Fib(6i-1) and y(i) = Fib(6i-1) satisfy x^2 - D*y^2 = -4 and (second) x(i) = 2*Fib(6i+3) - Fib(6i+2) and y(i) = Fib(6i+2) satisfy x^2 - D*y^2 = 4; but neither of these satisfy the restriction that, for all x < x(i) and all y < y(i), |x/y - sqrt(D)| > |x(i)/y(i) - sqrt(D)|.
A good approximation for the order of magnitude of a(n) is given by 2*log(2*A033313(n)).
For a lower bound, all values m satisfying either m = -D + k^2 for k^2 < D or m = 1, D = A000037(n), contribute with a sequence to the convergent series of sqrt(D), so a(n) > floor(sqrt(D)) + 1.

Examples

			For A000037(4) = 6, a(4) = 4 we have the following sequences of pairs (x,y):
m = 1: x(0) = 1, x(1) = 5, x(i) = 10*x(i-1) - x(i-2) as in A001079(i) and y(0) = 0, y(1) = 2, y(i) = 10*y(i-1) - y(i-2) as in A001078(i);
m = -6: x(0) = 0, x(1) = 12, x(i) = 10*x(i-1) - x(i-2) as in A004291(i) (for i > 0) and y(0) = 1, y(1) = 5, y(i) = 10*y(i-1) - y(i-2) as in A001079(i);
m = -5: x(0) = 1, x(1) = 17, x(i) = 10*x(i-1) - x(i-2) and y(0) = 1, y(1) = 7, y(i) = 10*y(i-1) - y(i-2);
m = -2: x(0) = 2, x(1) = 22, x(i) = 10*x(i-1) - x(i-2) and y(0) = 1, y(1) = 9, y(i) = 10*y(i-1) - y(i-2) as in A072256(i+1).
In some cases a combination of A000037(n) and m has more than one integer pair sequence, for example A000037(5) = 7 and m = -3 has two integer pair sequences:
x(0) = 2, x(1) = 37, x(i) = 16*x(i-1) - x(i-2) and y(0) = 1, y(1) = 14, y(i) = 16*y(i-1) - y(i-2);
x(0) = -2, x(1) = 5, x(i) = 16*x(i-1) - x(i-2) and y(0) = 1, y(1) = 2, y(i) = 16*y(i-1) - y(i-2).
For A000037(4) = 6, the sequence observed from x^2 - 6y^2 = 3 is not in the convergent series of sqrt(6) due to for example x1/y1 = 2643/1079 = sqrt(6) + 5.259842e-7 while the smaller x,y pair, x2/y2 = 2158/881 from x^2 - 6y^2 = -2 is a fraction closer to sqrt(5), 2158/881 = sqrt(6) - 5.259841e-7.
		

Crossrefs

Programs

  • Python
    from fractions import Fraction
    def FracSqrt(p):
        a = Fraction(p/1)
        b = Fraction(1/1)
        e = Fraction(10**(-200))
        while a-b > e:
            a = (a+b)/2
            b = p/a
        return a
    print("number: ")
    pp = int(input())
    p = FracSqrt(pp)
    n = 0
    while n >= 0:
        n = n+1
        q = p.limit_denominator(n)
        if (n == 1) or (q != q0):
            t = q*n
            m = t*t-pp*n*n
            print(n,q,m)
        q0 = q
Previous Showing 11-15 of 15 results.