cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A154153 Numbers k such that 28 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

6, 8, 47, 57, 278, 336, 1623, 1961, 9462, 11432, 55151, 66633, 321446, 388368, 1873527, 2263577, 10919718, 13193096, 63644783, 76895001, 370948982, 448176912, 2162049111, 2612166473, 12601345686, 15224821928, 73446025007, 88736765097, 428074804358, 517195768656
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			6, 8, 47, and 57 are terms:
   6* (6+1)/2 + 28 =  7^2,
   8* (8+1)/2 + 28 =  8^2,
  47*(47+1)/2 + 28 = 34^2,
  57*(57+1)/2 + 28 = 41^2.
		

Crossrefs

Cf. A001108 (0), A006451 (1), A154138 (3), A154139 (4), A154140 (6), A154141 (8), A154142 (9), A154143 (10), A154144 (13), A154145 (15), A154146 (16), A154147 (19), A154148 (21), A154149 (22), A154150(24), A154151 (25), A154151 (26), this sequence (28), A154154 (30).

Programs

  • Mathematica
    Join[{6, 8}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 28 &]] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 28), print1(n, ", ") ) );}

Formula

{k: 28+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-6-2*x-3*x^2+2*x^3+7*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 14 + 1/(x-1) + (14+29*x)/(x^2-2*x-1) + (-1-12*x)/(x^2+2*x-1) )/2. (End)
See also the Corneth link - David A. Corneth, Mar 18 2019

Extensions

a(21)-a(30) from Amiram Eldar, Mar 18 2019

A271626 Numbers n such that the sum of the digits of the numbers from 0 to n is a square.

Original entry on oeis.org

0, 1, 8, 17, 19, 27, 46, 62, 91, 99, 145, 152, 304, 359, 472, 513, 571, 684, 720, 799, 913, 1204, 1232, 1413, 1771, 2599, 2907, 3059, 3509, 3769, 3887, 4158, 4507, 4787, 5071, 6209, 7399, 7739, 8059, 8486, 9566, 10709, 11545, 12139, 13284, 13573, 14607, 15417
Offset: 1

Views

Author

Paolo P. Lava, Apr 11 2016

Keywords

Examples

			0 = 0^2 and 1 = 1^2;
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 = 6^2;
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 + 0 + 1 + 1 + 1 + 2 + 1 + 3 + 1 + 4 + 1 + 5 + 1 + 6 + 1 + 7 = 81 = 9^2.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n; a:=0; for n from 0 to q do b:=0; c:=n;
    for k from 1 to ilog10(n)+1 do b:=b+(c mod 10); c:=trunc(c/10); od; a:=a+b;
    if a=trunc(sqrt(a))*trunc(sqrt(a)) then print(n); fi; od; end: P(10^6);
  • Mathematica
    Select[Range[0, 16000], IntegerQ@ Sqrt@ Total@ Map[Total@ IntegerDigits@ # &, Range[0, #]] &] (* Michael De Vlieger, Apr 11 2016 *)
  • PARI
    isok(n) = issquare(sum(k=1, n, sumdigits(k))); \\ Michel Marcus, Apr 11 2016

A340560 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Product_{a=1..n-1} Product_{b=1..k-1} (4*sin(a*Pi/n)^2 + 4*sin(b*Pi/k)^2).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 49, 49, 1, 1, 288, 1296, 288, 1, 1, 1681, 30625, 30625, 1681, 1, 1, 9800, 707281, 2654208, 707281, 9800, 1, 1, 57121, 16257024, 219069601, 219069601, 16257024, 57121, 1, 1, 332928, 373301041, 17860500000, 62500000000, 17860500000, 373301041, 332928, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 11 2021

Keywords

Examples

			Square array begins:
  1,    1,      1,         1,           1, ...
  1,    8,     49,       288,        1681, ...
  1,   49,   1296,     30625,      707281, ...
  1,  288,  30625,   2654208,   219069601, ...
  1, 1681, 707281, 219069601, 62500000000, ...
		

Crossrefs

Rows and columns 1..2 give A000012, A001108.
Main diagonal gives A340562.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n-1, prod(b=1, k-1, 4*sin(a*Pi/n)^2+4*sin(b*Pi/k)^2)))}

Formula

T(n,k) = T(k,n).
T(n,k) = A212796(n,k)/(n*k).

A076115 Squares (or 0) from A076114.

Original entry on oeis.org

1, 9, 9, 0, 25, 81, 49, 36, 81, 225, 121, 0, 169, 441, 225, 0, 289, 225, 361, 0, 441, 1089, 529, 324, 400, 1521, 729, 0, 841, 2025, 961, 784, 1089, 2601, 1225, 0, 1369, 3249, 1521, 900, 1681, 3969, 1849, 0, 2025, 4761, 2209, 0, 1225, 2025, 2601, 0, 2809, 2025
Offset: 1

Views

Author

Amarnath Murthy, Oct 09 2002

Keywords

Examples

			a(2) = 4+5 = 9= 3^2. a(8)= 1+2+3+4+5+6+7+8 = 36 = 6^2.
		

Crossrefs

Extensions

More terms from David Wasserman, Apr 02 2005

A175032 a(n) is the difference between the n-th triangular number and the next perfect square.

Original entry on oeis.org

0, 0, 1, 3, 6, 1, 4, 8, 0, 4, 9, 15, 3, 9, 16, 1, 8, 16, 25, 6, 15, 25, 3, 13, 24, 36, 10, 22, 35, 6, 19, 33, 1, 15, 30, 46, 10, 26, 43, 4, 21, 39, 58, 15, 34, 54, 8, 28, 49, 0, 21, 43, 66, 13, 36, 60, 4, 28, 53, 79, 19, 45, 72, 9, 36, 64, 93, 26, 55, 85, 15, 45, 76, 3, 34, 66, 99, 22
Offset: 0

Views

Author

Ctibor O. Zizka, Nov 09 2009

Keywords

Comments

All terms are from {0} U A175035. No terms are from A175034.
The sequence consists of ascending runs of length 3 or 4. The first run starts at n = 1 and thereafter the k-th run starts at n = A214858(k - 1). - John Tyler Rascoe, Nov 05 2022

Crossrefs

Cf. sequences where a(m)=k: A001108 (0), A006451 (1), A154138 (3), A154139 (4), A154140 (6), A154141 (8), A154142 (9), A154143 (10), A154144 (13), A154145 (15), A154146 (16), A154147 (19), A154148 (21), A154149 (22), A154150(24), A154151 (25), A154151 (26), A154153(28), A154154 (30).

Programs

  • Mathematica
    Ceiling[Sqrt[#]]^2-#&/@Accumulate[Range[0,80]] (* Harvey P. Dale, Aug 25 2013 *)
  • PARI
    a(n) = my(t=n*(n+1)/2); if (issquare(t), 0, (sqrtint(t)+1)^2 - t); \\ Michel Marcus, Nov 06 2022

Formula

a(n) = (ceiling(sqrt(n*(n+1)/2)))^2 - n*(n+1)/2. - Ctibor O. Zizka, Nov 09 2009
a(n) = A080819(n) - A000217(n). - R. J. Mathar, Aug 24 2010

Extensions

Erroneous formula variant deleted and offset set to zero by R. J. Mathar, Aug 24 2010

A175034 Offsets i such that i + n*(n+1)/2 is never a perfect square for any n>0.

Original entry on oeis.org

2, 5, 7, 11, 12, 14, 17, 18, 20, 23, 27, 29, 31, 32, 37, 38, 40, 41, 42, 44, 47, 50, 51, 52, 56, 57, 59, 62, 65, 67, 68, 69, 70, 73, 74, 77, 82, 83, 84, 86, 87, 88, 92, 95, 96, 98, 101, 102, 104, 107, 109, 110, 112, 113, 117, 119, 122, 125, 126, 127, 128, 131, 132, 135, 137, 139
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 10 2009

Keywords

Comments

Complement of A175035.

Crossrefs

Extensions

Extended by R. J. Mathar, Nov 26 2009

A212614 Least k > 1 such that the product tri(n) * tri(k) is triangular, or zero if no such k exists, where tri(k) is the k-th triangular number.

Original entry on oeis.org

2, 5, 3, 6, 2, 4, 10, 0, 13, 7, 5, 4, 9, 3, 20, 208, 185, 14, 5, 2, 6, 14, 12, 115, 55, 37, 748, 11, 12, 1358, 90, 90, 6, 3, 21, 11, 26, 10, 33, 21, 265, 51, 61, 75, 96, 131, 201, 411, 0, 10, 7, 148, 113, 92, 4, 68, 364, 329, 50, 5083, 43, 329594, 38, 36, 2414
Offset: 1

Views

Author

T. D. Noe, May 31 2012

Keywords

Comments

That is, tri(k) = k(k+1)/2. It is provable that a(8) and a(49) are zero.
Other terms that are zero are given in sequence A001108. Note that a(71) = 2076978. In general, a Pell equation of the form x^2 = 1 + 2*n(n+1)*y*(y+1) must be solved to find a(n). - T. D. Noe, Jun 03 2012

Examples

			For n = 2, tri(n) = 3 and the first k is 5 because tri(5) = 15 and 3*15 = 45 is triangular.
		

Crossrefs

Cf. A188630 (triangular numbers that are tri(x) * tri(y) for some x,y > 1).
Cf. A212615 (similar sequence for pentagonal numbers).
Cf. A000217 (triangular numbers).

Programs

  • Mathematica
    kMax = 10^6; TriangularQ[n_] := IntegerQ[Sqrt[1 + 8*n]]; Table[t = n*(n+1)/2; k = 2; While[t2 = k*(k+1)/2; k < kMax && ! TriangularQ[t*t2], k++]; If[k == kMax, 0, k], {n, 65}]

A229083 Numbers k such that the distance between the k-th triangular number and the nearest square is at most 1.

Original entry on oeis.org

1, 2, 4, 5, 8, 15, 25, 32, 49, 90, 148, 189, 288, 527, 865, 1104, 1681, 3074, 5044, 6437, 9800, 17919, 29401, 37520, 57121, 104442, 171364, 218685, 332928, 608735, 998785, 1274592, 1940449, 3547970, 5821348, 7428869, 11309768, 20679087, 33929305, 43298624, 65918161
Offset: 1

Views

Author

Ralf Stephan, Sep 13 2013

Keywords

Comments

The k-th triangular number (A000217) is a square, or a square plus or minus one.
Union of A006451 (k-th triangular number is a square minus one), A072221 (k-th triangular number is a square plus one), and A001108 (k-th triangular number is square). Also, union of A229131 and A001108.

Examples

			A000217(4) = 10 and 10 - 3^2 = 1 so 4 is in the sequence.
A000217(5) = 15 and 4^2 - 15 = 1 so 5 is in the sequence.
A000217(8) = 36 = 6^2 so 8 is in sequence.
		

Crossrefs

Programs

  • PARI
    for(n=1,10^8,for(i=-1,1,f=0;if(issquare(n*(n+1)/2+i),f=1;break));if(f,print1(n,",")))

Formula

G.f.: (x^7 - 2*x^6 + x^5 - 3*x^4 + x^3 + 2*x^2 + x + 1)/((1-2*x^2+x^4)*(1-2*x^2-x^4)*(1-x)) (conjectured).

A298020 Maximal overhang that can be attained from a stack of blocks of lengths 1,2,...,n (numerators).

Original entry on oeis.org

1, 8, 9, 463, 1057, 4010, 570097, 32903, 828667, 25743541, 431266313, 16610986697, 16089123031, 1971622002613, 2723872673, 159888988030039, 377543463271, 12771918729143, 19566551419628659, 2983570575161357, 1774565709813223
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2018

Keywords

Comments

Data supplied by David Treeby.
For the classical problem when there are n blocks all of the same length see A001108/A002805 and A065071.

Examples

			The maximal overhangs are 1, 8/3, 9/2, 463/70, 1057/120, 4010/357, 570097/41496, 32903/2016, 828667/43605, 25743541/1180300, 431266313/17472840, 16610986697/601495180, ...
		

Crossrefs

For denominators see A298021.

Programs

  • Mathematica
    (* See link. *)

A298021 Maximal overhang that can be attained from a stack of blocks of lengths 1,2,...,n (denominators).

Original entry on oeis.org

1, 3, 2, 70, 120, 357, 41496, 2016, 43605, 1180300, 17472840, 601495180, 525594160, 58565520300, 74066256, 3999303586720, 8733019680, 274477212900, 392291457008100, 56011301214120, 31297881399400, 12003126367152512883720, 5673579586816030200, 1466117956976400, 186018119917880598413465400
Offset: 1

Views

Author

N. J. A. Sloane, Jan 15 2018

Keywords

Comments

Data supplied by David Treeby.
For the classical problem when there are n blocks all of the same length see A001108/A002805 and A065071.

Examples

			The maximal overhangs are 1, 8/3, 9/2, 463/70, 1057/120, 4010/357, 570097/41496, 32903/2016, 828667/43605, 25743541/1180300, 431266313/17472840, 16610986697/601495180, ...
		

Crossrefs

For numerators see A298020.

Programs

  • Mathematica
    (* See link. *)
Previous Showing 41-50 of 63 results. Next