A102122
Iccanobirt numbers (12 of 15): a(n) = R(R(a(n-1)) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 7, 31, 42, 26, 531, 302, 67, 909, 8721, 4522, 48811, 72152, 6487, 908821, 844702, 6572211, 9726782, 29139201, 58129562, 86185456, 139627251, 949140792, 656458225, 9962261161, 6171227123, 20114953831, 68392496992
Offset: 0
-
R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
nxt[{a_,b_,c_}]:={b,c,IntegerReverse[IntegerReverse[c]+b+a]}; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Sep 10 2024 *)
A102123
Iccanobirt numbers (13 of 15): a(n) = R(R(a(n-1)) + a(n-2) + R(a(n-3))), where R is the digit reversal function A004086.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 7, 31, 42, 26, 711, 761, 49, 279, 8811, 1651, 44311, 38141, 55006, 45901, 34108, 990681, 161132, 5891031, 6129461, 8041777, 45820251, 74839842, 60558487, 202825861, 635089352, 309192535, 7549098331, 8252802091
Offset: 0
-
R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+a[n-2]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
A102118
Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.
Original entry on oeis.org
0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0
Cf.
A102111,
A102112,
A102113,
A102114,
A102115,
A102116,
A102117,
A102119,
A102120,
A102121,
A102122,
A102123,
A102124,
A102125.
-
R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)
A101764
Iccanobif semiprime indices: Indices of semiprime numbers in A014258.
Original entry on oeis.org
8, 10, 13, 17, 23, 26, 28, 29, 31, 39, 42, 53, 55, 56, 73, 83, 94, 98, 101, 113, 114, 115, 121, 167, 217, 255, 266, 326, 327, 333, 367, 389, 397, 404, 409, 423, 425, 467, 497, 570, 631, 639, 749, 761
Offset: 1
Missing 367 inserted and new terms 570-761 added by
Lucas A. Brown, Nov 12 2022
A101765
Iccanobif semiprime indices: Indices of semiprime numbers in A014259.
Original entry on oeis.org
8, 9, 15, 16, 18, 22, 32, 37, 46, 53, 61, 62, 64, 79, 82, 106, 121, 129, 149, 153, 229, 241, 266, 301, 381, 411, 502
Offset: 1
A101766
Iccanobif semiprime indices: Indices of semiprime numbers in A014260.
Original entry on oeis.org
8, 16, 18, 21, 26, 38, 42, 44, 49, 54, 55, 57, 61, 67, 77, 78, 115, 123, 134, 145, 151, 154, 202, 218, 249, 286, 349, 403, 498, 539, 647
Offset: 1
A237568
Fibonacci-like sequence of numbers with nondecreasing positive digits. Let a^+ denote the number that is obtained from a if its positive digits are written in nondecreasing order, while zeros remain in their places. Let a<+>b = (a + b)^+. a(0)=0, a(1)=1, for n>=2, a(n) = a(n-1) <+> a(n-2).
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 8, 13, 12, 25, 37, 26, 36, 26, 26, 25, 15, 40, 55, 59, 114, 137, 125, 226, 135, 136, 127, 236, 336, 257, 359, 166, 255, 124, 379, 305, 468, 377, 458, 358, 168, 256, 244, 500, 447, 479, 269, 478, 477, 559, 1036, 1559, 2559, 1148, 3707, 4558, 2568, 1267, 3358, 2456, 1458, 1349, 2708, 4057, 5667, 2479, 1468, 3479, 4479, 5789, 10268, 15067, 23355, 22348
Offset: 0
-
a[0]:=0;a[1]:=1;a[n_]:=a[n]=FromDigits[Insert[DeleteCases[Sort[#],0],0,1+#-Range[Length[#]]&[Position[#,0]]]&[IntegerDigits[a[n-1]+a[n-2]]]]; Map[a,Range[0,99]] (* Peter J. C. Moses, Feb 09 2014 *)
A237575
Fibonacci-like numbers with nonincreasing positive digits. Let a** denote the number that is obtained from a if its digits are written in nonincreasing order. Let a<+>b = (a + b)**. a(0)=0, a(1)=1, for n>=2, a(n) = a(n-1) <+> a(n-2).
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 8, 31, 93, 421, 541, 962, 5310, 7622, 93221, 843100, 963321, 8642110, 9654310, 98642210, 986522100, 8654311100, 9864332000, 88654311100, 98865431100, 987754221100, 9866652211000, 86544432110000, 98644321110000, 888755322110000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, n, parse(cat(
sort(convert(a(n-1)+a(n-2), base, 10), `>`)[])))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 31 2022
-
a[0]:=0;a[1]:=1;a[n_]:=a[n]=FromDigits[Reverse[Sort[IntegerDigits[a[n-1]+a[n-2]]]]];Map[a,Range[0,20]] (* Peter J. C. Moses, Feb 09 2014 *)
A101762
Iccanobif prime indices: Indices of prime numbers in A014260.
Original entry on oeis.org
3, 4, 5, 7, 11, 13, 19, 22, 25, 30, 39, 71, 81, 98, 1041, 2942, 4377, 10410
Offset: 1
A210791
Triangle of coefficients of polynomials u(n,x) jointly generated with A210792; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 7, 3, 1, 4, 17, 14, 5, 1, 5, 36, 42, 30, 8, 1, 6, 72, 104, 111, 58, 13, 1, 7, 141, 233, 329, 251, 111, 21, 1, 8, 275, 494, 862, 848, 553, 206, 34, 1, 9, 538, 1016, 2097, 2479, 2112, 1158, 377, 55, 1, 10, 1058, 2056, 4870, 6608, 6875
Offset: 1
First five rows:
1;
1, 1;
1, 2, 2;
1, 3, 7, 3;
1, 4, 17, 14, 5;
First three polynomials u(n,x):
1
1 + x
1 + 2x + 2x^2.
From _Philippe Deléham_, Mar 29 2012: (Start)
(1, 0, 0, 2, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 2, 2, 0;
1, 3, 7, 3, 0;
1, 4, 17, 14, 5, 0;
1, 5, 36, 42, 30, 8, 0;
1, 6, 72, 104, 111, 58, 13, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 0; c = 0; h = -1; p = 2; f = 0;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210791 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210792 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A007051 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000244 *)
Table[u[n, x] /. x -> -1, {n, 1, z}] (* A001129 *)
Table[v[n, x] /. x -> -1, {n, 1, z}] (* A001333 *)
Comments