A109714 Sequence defined by a recurrence close to that of A001147.
1, 1, 3, 18, 120, 1170, 12600, 176400, 2608200, 46607400, 883159200, 19429502400, 447567120000, 11629447830000, 316028116404000, 9516436753824000, 297478346845680000, 10151626256147376000, 359237701318479984000, 13733349319337487840000, 542212802070902202240000
Offset: 1
Examples
a(3) = 3*a(1)*a(2) = 3, a(4) = 4*a(1)*a(3) + 6*a(2)^2 = 18.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..403
Crossrefs
Cf. A001147
Programs
-
MATLAB
function m = a(n); if n==1 m = 1; elseif n==2 m = 1; else m = 0; for i=1:floor(n/2); f1 = binomial(n,i); f2 = a(i); f3 = a(n-i); m = m + f1*f2*f3; end; end;
-
Mathematica
Fold[Append[#1, Sum[Binomial[#2, i] #1[[i]] #1[[#2 - i]], {i, Floor[#2/2]}]] &, {1, 1}, Range[3, 21]] (* Michael De Vlieger, Dec 13 2017 *)
Formula
a(1) = 1, a(2) = 1 and a(n) = Sum_{i=1..floor(n/2)} binomial(n, i) * a(i) * a(n-i) for n >= 3.
Comments