cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 650 results. Next

A109714 Sequence defined by a recurrence close to that of A001147.

Original entry on oeis.org

1, 1, 3, 18, 120, 1170, 12600, 176400, 2608200, 46607400, 883159200, 19429502400, 447567120000, 11629447830000, 316028116404000, 9516436753824000, 297478346845680000, 10151626256147376000, 359237701318479984000, 13733349319337487840000, 542212802070902202240000
Offset: 1

Views

Author

Niko Brummer (niko.brummer(AT)gmail.com), Aug 08 2005

Keywords

Comments

From Christopher J. Smyth, Jan 26 2018: (Start)
The sequence is defined by the recurrence formula below. This recurrence is very similar to that of the sequence b(n) = A001147(n-1), which satisfies b(1)=1 and, for n >= 2, b(n) = Sum_{i=1..floor((n-1)/2)} binomial(n, i) * b(i) * b(n-i) + B, where B = 0 (n odd), = (1/2)*binomial(n, n/2)*b(n/2)^2 (n even) [see formula of Walsh on A001147 page]. Removal of the factor 1/2 from the definition of B gives, for n >= 3, the formula below for a(n).
This sequence seems to have been defined in the mistaken belief that it had applications. In fact the applications stated on earlier versions of this page actually belonged to A001147 -- see my comment on the A001147 page.
(End)

Examples

			a(3) = 3*a(1)*a(2) = 3, a(4) = 4*a(1)*a(3) + 6*a(2)^2 = 18.
		

Crossrefs

Programs

  • MATLAB
    function m = a(n); if n==1 m = 1; elseif n==2 m = 1; else m = 0; for i=1:floor(n/2); f1 = binomial(n,i); f2 = a(i); f3 = a(n-i); m = m + f1*f2*f3; end; end;
  • Mathematica
    Fold[Append[#1, Sum[Binomial[#2, i] #1[[i]] #1[[#2 - i]], {i, Floor[#2/2]}]] &, {1, 1}, Range[3, 21]] (* Michael De Vlieger, Dec 13 2017 *)

Formula

a(1) = 1, a(2) = 1 and a(n) = Sum_{i=1..floor(n/2)} binomial(n, i) * a(i) * a(n-i) for n >= 3.

A125080 Triangle, read by rows, defined by T(n,k) = A000108(n-k)*A001147(k)*C(n,2*k), for k=0..[n/2], n>=0, where A000108 is the Catalan numbers and A001147 is the double factorials.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 14, 30, 6, 42, 140, 75, 132, 630, 630, 75, 429, 2772, 4410, 1470, 1430, 12012, 27720, 17640, 1470, 4862, 51480, 162162, 166320, 39690, 16796, 218790, 900900, 1351350, 623700, 39690, 58786, 923780, 4813380, 9909900, 7432425
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2006

Keywords

Examples

			Table begins:
1;
1;
2, 1;
5, 6;
14, 30, 6;
42, 140, 75;
132, 630, 630, 75;
429, 2772, 4410, 1470;
1430, 12012, 27720, 17640, 1470;
4862, 51480, 162162, 166320, 39690;
16796, 218790, 900900, 1351350, 623700, 39690; ...
		

Crossrefs

Cf. A115081 (row sums), A115080; A000108, A001147.

Programs

  • PARI
    T(n,k)=binomial(2*n-2*k,n-k)/(n-k+1)*binomial(2*k,k)*k!/2^k*binomial(n,2*k)
    
  • PARI
    T(n,k)=(2*n-2*k)!*n!/k!/(n-k)!/(n-k+1)!/(n-2*k)!/2^k

Formula

Row sums equals A115081, which is column 0 of triangle A115080.

A165433 A transform of the double factorial numbers A001147.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 39, 97, 308, 897, 3139, 10304, 38997, 140893, 570002, 2230599, 9567979, 40091222, 181203603, 805962157, 3819522284, 17912075229, 88646095447, 435959031488, 2245454002137, 11530035000169, 61627679281154
Offset: 0

Views

Author

Paul Barry, Sep 18 2009

Keywords

Comments

Hankel transform is A000178.

Programs

  • Magma
    [(&+[Binomial(n-k,k)*Factorial(2*k)/(Factorial(k)*2^k): k in [0.. Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 20 2018
  • Maple
    a:=proc(n) add(binomial(n-k,k)*factorial(2*k)/(factorial(k)*2^k),k=0..floor(n/2)) end proc: seq(a(n),n=0..30); # Muniru A Asiru, Oct 20 2018
  • Mathematica
    Table[Sum[Binomial[n-k, k]*(2*k)!/(k!*2^k), {k, 0, Floor[n/2]}], {n,0, 30}] (* G. C. Greubel, Oct 20 2018 *)
  • PARI
    vector(30, n, n--; sum(k=0, floor(n/2), binomial(n-k,k)*(2*k)!/(k!*2^k))) \\ G. C. Greubel, Oct 20 2018
    

Formula

G.f.: 1/(1-x-x^2-2x^4/(1-x-5x^2-12x^4/(1-x-9x^2-30x^4/(1-x-13x^2-56x^4/(1-.... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*(2k)!/(k!*2^k).
Conjecture: 2*a(n) -3*a(n-1) +(3-2*n)*a(n-2) +(2*n-3)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 29 2013
a(n) ~ 2^(-1/2) * exp(sqrt(n)/2 - n/2 + 1/16) * n^(n/2) * (1 + 121/(192*sqrt(n))). - Vaclav Kotesovec, Apr 18 2024

A176231 Coefficient array of orthogonal polynomials whose moment sequence is the double factorial numbers A001147.

Original entry on oeis.org

1, -1, 1, 3, -6, 1, -15, 45, -15, 1, 105, -420, 210, -28, 1, -945, 4725, -3150, 630, -45, 1, 10395, -62370, 51975, -13860, 1485, -66, 1, -135135, 945945, -945945, 315315, -45045, 3003, -91, 1, 2027025, -16216200, 18918900, -7567560, 1351350, -120120, 5460, -120, 1
Offset: 0

Views

Author

Paul Barry, Apr 12 2010

Keywords

Comments

Exponential Riordan array [1/sqrt(1+2x),x/(1+2x)]. Inverse of A176230.
Diagonal sums are an alternating sign version of A025164.

Examples

			Triangle begins
  1,
  -1, 1,
  3, -6, 1,
  -15, 45, -15, 1,
  105, -420, 210, -28, 1,
  -945, 4725, -3150, 630, -45, 1,
  10395, -62370, 51975, -13860, 1485, -66, 1,
  -135135, 945945, -945945, 315315, -45045, 3003, -91, 1,
  2027025, -16216200, 18918900, -7567560, 1351350, -120120, 5460, -120, 1
Production matrix is
  -1, 1,
  2, -5, 1,
  0, 12, -9, 1,
  0, 0, 30, -13, 1,
  0, 0, 0, 56, -17, 1,
  0, 0, 0, 0, 90, -21, 1,
  0, 0, 0, 0, 0, 132, -25, 1,
  0, 0, 0, 0, 0, 0, 182, -29, 1,
  0, 0, 0, 0, 0, 0, 0, 240, -33, 1
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> (2*n)!*(-1/2)^(n-k)/(2*k)!*(n-k)!:
    seq(seq(T(n,k), k=0..n), n=0..8); # Peter Luschny, Jul 20 2019
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 9;
    R = RiordanArray[1/Sqrt[1 + 2 #]&, #/(1 + 2 #)&, rows, True];
    R // Flatten (* Jean-François Alcover, Jul 20 2019 *)
    T[ n_, k_] := Coefficient[ HermiteH[2 n, x/Sqrt[2]], x, 2 k]/2^n; (* Michael Somos, Jan 15 2020 *)
    T[ n_, k_] := Coefficient[ Nest[# x - D[#, x]&, 1, 2 n], x, 2 k]; (* Michael Somos, Jan 15 2020 *)
  • PARI
    {T(n, k) = my(t=1); for(i=1, 2*n, t = x*t - t'); polcoeff(t, 2*k)}; /* Michael Somos, Jan 15 2020 */

Formula

Number triangle T(n,k) = (-1)^(n-k)*(2n)!/((2k)!(n-k)!2^(n-k)).
He_(2*n)(x) = Sum_{k=0..n} T(n, k)*x^(2*k) where He is Hermite's polynomial. - Michael Somos, Jan 15 2020

A273377 Discriminator of the double factorial of odd numbers (A001147).

Original entry on oeis.org

1, 3, 5, 11, 11, 11, 19, 23, 23, 41, 41, 64, 83, 89, 89, 89, 89, 89, 89, 89, 89, 109, 109, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 167, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 379, 379, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421, 421
Offset: 1

Views

Author

Jeffrey Shallit, May 21 2016

Keywords

Comments

The discriminator of a sequence is the least positive integer k such that the first n terms of the sequence are pairwise
incongruent, modulo k.
Here we are taking A001147 beginning at position 1.

A103512 Smallest m such that A001147(n)+m is prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 16, 8, 4, 64, 2, 2, 8, 2, 4, 118, 32, 82, 178, 4, 8, 4, 16, 16, 298, 64, 16, 194, 2, 298, 316, 8, 334, 32, 226, 386, 4, 2, 358, 8, 178, 254, 206, 206, 218, 8, 4, 254, 452, 914, 346, 2, 758, 394, 362, 394, 556, 422, 32, 346, 1108, 394, 932, 362, 604, 1382
Offset: 1

Views

Author

Lei Zhou, Feb 15 2005

Keywords

Examples

			A001147(1)=1!!=1, 1+1=2 is prime, so a(1)=1;
A001147(2)=3!!=3, 3+2=5 is prime, so a(2)=2;
A001147(7)=13!!=135135, 135135+16=135151 is prime, so a(7)=16.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Select[Range[1500],PrimeQ[(2n-1)!!+#]&,1],{n,66}]] (* James C. McMahon, Jan 20 2024 *)

A124495 G.f.: A(x) = 1/[1-x - Sum_{n>=1} A001147(n)*x^(2n) ] where A001147(n) = (2n)!/(n!*2^n) is the double factorials.

Original entry on oeis.org

1, 1, 2, 3, 8, 14, 43, 81, 283, 556, 2243, 4512, 21374, 43469, 243817, 497217, 3289606, 6697795, 51583952, 104698998, 922789643, 1867079621, 18522929815, 37380015420, 411572179999, 828925168492, 10014624164666, 20140445929353
Offset: 0

Views

Author

Paul D. Hanna, Nov 04 2006

Keywords

Comments

Is this sequence equal to A076876 (meandric numbers for a river crossing two parallel roads at n points)?

Examples

			G.f.: A(x) = 1/(1-x - x^2 - 3*x^4 - 15*x^6 - 105*x^8 - 945*x^10 -...).
		

Crossrefs

Cf. A001147.

Programs

  • PARI
    a(n)=polcoeff(1/(1-x-sum(k=1,n\2,(2*k)!/k!/2^k*x^(2*k))+x*O(x^n)),n)

A143081 A symmetrical triangle of coefficients based on A001147: a(n)=(2*n-1)*a(n-1); t(n,m)=a(n)^2/((2*n - 1)*a(m)*a(n - m)).

Original entry on oeis.org

-1, 1, 1, 1, 3, 1, 3, 15, 15, 3, 15, 105, 175, 105, 15, 105, 945, 2205, 2205, 945, 105, 945, 10395, 31185, 43659, 31185, 10395, 945, 10395, 135135, 495495, 891891, 891891, 495495, 135135, 10395, 135135, 2027025, 8783775, 19324305, 24845535, 19324305, 8783775, 2027025, 135135, 2027025, 34459425
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 15 2008

Keywords

Comments

Row sums are:{-1, 2, 5, 36, 415, 6510, 128709, 3065832, 85386015, 2721425850, 97665121125}.

Examples

			{-1},
{1, 1},
{1, 3, 1},
{3, 15, 15, 3},
{15, 105, 175, 105, 15},
{105, 945, 2205, 2205, 945, 105},
{945, 10395, 31185, 43659, 31185, 10395, 945},
{10395, 135135, 495495, 891891, 891891, 495495, 135135, 10395},
{135135, 2027025, 8783775, 19324305, 24845535, 19324305, 8783775, 2027025, 135135},
{2027025, 34459425, 172297125, 447972525, 703956825, 703956825, 447972525, 172297125, 34459425, 2027025}, {34459425, 654729075, 3710131425, 11130394275,
20670732225, 25264228275, 20670732225, 11130394275, 3710131425, 654729075,
34459425}
		

Crossrefs

Cf. A001147.

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = (2*n - 1)*a[n - 1]; Table[Table[a[n]^2/((2*n - 1)*a[m]*a[n - m]), {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

a(n)=(2*n-1)*a(n-1); t(n,m)=a(n)^2/((2*n - 1)*a(m)*a(n - m)).

A144457 Coefficients of polynomials based on the generalized factorial at k=2 (A001147): b(n)=b(n-1+k; a(n)=b(n)*a(n-1); p(x,n)=If[n == 0, 1, a(n - 1)*(x - a(n - 1))*Product[x + 1/b(i), {i, 1, n - 1}]].

Original entry on oeis.org

1, -1, 1, -3, -8, 3, -15, -119, -217, 15, -105, -1574, -7440, -10954, 105, -945, -22679, -194646, -702874, -892281, 945, -10395, -363824, -4885615, -31288480, -94892945, -108046896, 10395, -135135, -6486479, -124999827, -1232430275, -6521470845, -17442096461, -18261339153, 135135
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 07 2008

Keywords

Comments

The name contains an unmatched parenthesis. - Editors, Mar 13 2024
Row sums are:
{1, 0, -8, -336, -19968, -1812480, -239477760, -43588823040, -10461389783040, -3201186759966720, -1216451002230374400}.

Examples

			{1},
{-1, 1},
{-3, -8, 3},
{-15, -119, -217, 15},
{-105, -1574, -7440, -10954,105},
{-945, -22679, -194646, -702874, -892281,945},
{-10395, -363824, -4885615, -31288480, -94892945, -108046896, 10395},
{-135135, -6486479, -124999827, -1232430275, -6521470845, -17442096461, -18261339153, 135135}
		

Crossrefs

Cf. A001147.

Programs

  • Mathematica
    Clear[a, b, p, x, n]; k = 2; b[0] = 1; b[n_] := b[n] = b[n - 1] + k; a[0] = 1; a[n_] := a[n] = b[n]*a[n - 1]; p[x_, n_] = If[n == 0, 1, a[n - 1]*(x - a[n - 1])*Product[x + 1/b[i], {i, 1, n - 1}]]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]

Formula

b(n)=b(n-1+k; a(n)=b(n)*a(n-1); p(x,n)=If[n == 0, 1, a(n - 1)*(x - a(n - 1))*Product[x + 1/b(i), {i, 1, n - 1}]]; t(n,m)=coefficients(p(x,n)).

A208124 a(1)=2, a(n) = (4n/3)*(2n-1)!! (see A001147) for n>1.

Original entry on oeis.org

2, 8, 60, 560, 6300, 83160, 1261260, 21621600, 413513100, 8729721000, 201656555100, 5059746291600, 137034795397500, 3984550204635000, 123805667072587500, 4093840724533560000, 143540290403957947500, 5319434291440794525000, 207753461493493252837500, 8528826313943407221750000
Offset: 1

Views

Author

N. J. A. Sloane, Mar 27 2012

Keywords

Programs

  • Mathematica
    a[n_] := If[n == 1, 2, (4n/3)*(2n - 1)!!]; Array[a, 20] (* Amiram Eldar, Dec 01 2018 *)

Formula

(n-1)*a(n) =n*(2n-1)*a(n-1), n>2. - R. J. Mathar, Mar 27 2012
Previous Showing 31-40 of 650 results. Next