cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 73 results. Next

A363606 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^6.

Original entry on oeis.org

0, 1, 6, 22, 56, 133, 252, 484, 798, 1344, 2002, 3157, 4368, 6441, 8630, 12112, 15504, 21274, 26334, 35014, 42762, 55133, 65780, 84349, 98336, 123124, 143304, 176373, 201376, 247380, 278256, 336744, 379000, 451402, 502250, 600055, 658008, 775733, 855042
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 3, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^6)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 5) + 5*sigma(f, 4) + 5*sigma(f, 3) - 5*sigma(f, 2) - 6*sigma(f)) / 120; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k+3,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+3,5).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_5(n) + 5*sigma_4(n) + 5*sigma_3(n) - 5*sigma_2(n) - 6*sigma_1(n)) / 120.
Dirichlet g.f.: zeta(s) * (zeta(s-5) + 5*zeta(s-4) + 5*zeta(s-3) - 5*zeta(s-2) - 6*zeta(s-1)) / 120.
Sum_{k=1..n} a(k) ~ (zeta(6)/720) * n^6. (End)

A386747 a(n) = n^2*sigma_4(n).

Original entry on oeis.org

0, 1, 68, 738, 4368, 15650, 50184, 117698, 279616, 538083, 1064200, 1771682, 3223584, 4826978, 8003464, 11549700, 17895680, 24137858, 36589644, 47046242, 68359200, 86861124, 120474376, 148036418, 206356608, 244531875, 328234504, 392263236, 514104864, 594824162
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^2*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 02 2025
  • Mathematica
    Table[n^2*DivisorSigma[4, n], {n, 0, 40}]
    nmax = 40; CoefficientList[Series[Sum[k^6*x^k*(1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^6*x^k*(1 + x^k)/(1 - x^k)^3. - Amiram Eldar, Aug 01 2025
a(n) = n^2*A001159(n).
Dirichlet g.f.: zeta(s-2)*zeta(s-6).- R. J. Mathar, Aug 03 2025

A386749 a(n) = n*sigma_4(n).

Original entry on oeis.org

0, 1, 34, 246, 1092, 3130, 8364, 16814, 34952, 59787, 106420, 161062, 268632, 371306, 571676, 769980, 1118480, 1419874, 2032758, 2476118, 3417960, 4136244, 5476108, 6436366, 8598192, 9781275, 12624404, 14528268, 18360888, 20511178, 26179320, 28629182, 35791392, 39621252
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 01 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 02 2025
    
  • Mathematica
    Table[n*DivisorSigma[4, n], {n, 0, 50}]
    nmax = 50; CoefficientList[Series[x*Sum[k^5*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    a(n) = if (n, n*sigma(n,4), 0); \\ Michel Marcus, Aug 02 2025

Formula

G.f.: Sum_{k>=1} k^5*x^(k-1)/(1 - x^k)^2.
a(n) = n*A001159(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-5). - R. J. Mathar, Aug 03 2025

A386784 a(n) = n^4*sigma_4(n).

Original entry on oeis.org

0, 1, 272, 6642, 69888, 391250, 1806624, 5767202, 17895424, 43584723, 106420000, 214373522, 464196096, 815759282, 1568678944, 2598682500, 4581294080, 6975840962, 11855044656, 16983693362, 27343680000, 38305755684, 58309597984, 78311265122, 118861406208, 152832421875
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^4*DivisorSigma(4, n): n in [1..35]]; // Vincenzo Librandi, Aug 03 2025
  • Mathematica
    Table[n^4*DivisorSigma[4, n], {n, 0, 40}]
    nmax = 40; CoefficientList[Series[Sum[k^4*x^k*(1 + 247*x^k + 4293*x^(2*k) + 15619*x^(3*k) + 15619*x^(4*k) + 4293*x^(5*k) + 247*x^(6*k) + x^(7*k))/(1 - x^k)^9, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} k^4*x^k*(1 + 247*x^k + 4293*x^(2*k) + 15619*x^(3*k) + 15619*x^(4*k) + 4293*x^(5*k) + 247*x^(6*k) + x^(7*k))/(1 - x^k)^9.
a(n) = n^4*A001159(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-8). - R. J. Mathar, Aug 03 2025

A046687 Numbers k such that k and sum of 4th powers of divisors of k are relatively prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 72, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 98, 99, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119
Offset: 1

Views

Author

Keywords

Comments

All even terms are either squares or doubled squares. - Ivan Neretin, Dec 30 2015
The asymptotic density of this sequence is 0 (Dressler, 1974). - Amiram Eldar, Jul 23 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[120], GCD[#, DivisorSigma[4, #]] == 1 &] (* Ivan Neretin, Dec 30 2015 *)
    Select[Range[150],CoprimeQ[#,DivisorSigma[4,#]]&] (* Harvey P. Dale, Jan 15 2024 *)
  • PARI
    isok(n) = gcd(n, sigma(n, 4))  == 1; \\ Michel Marcus, Dec 20 2013

A046764 Sum of the 4th powers of the divisors of n is divisible by n.

Original entry on oeis.org

1, 34, 84, 156, 364, 492, 1092, 3444, 5617, 6396, 11234, 22468, 33628, 44772, 67404, 100884, 157276, 190978, 292084, 435708, 437164, 471828, 549687, 569772, 709937, 742612, 763912, 876252, 986076, 1099374, 1118480, 1289484, 1311492, 1419874
Offset: 1

Views

Author

Keywords

Comments

Compare with multiply perfect numbers, A007691. Here Sum[ divisors ] is replaced by Sum[ 4th powers of divisors ].
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006

Examples

			n=84, Sigma[ 4,84 ] = Sum(d^4) = 53771172 = 640133*84 = 640133*n;
n=5617, Sigma[ 4,5617 ] = 995446331475844 = 5617*17722083332, a multiple of n.
		

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[4, n], n]==0, Print[n]], {n, 1, 2*10^6}]
    Select[Range[1500000],Divisible[DivisorSigma[4,#],#]&] (* Harvey P. Dale, Jun 25 2014 *)
  • PARI
    is(n)=sigma(n, 4)%n==0 \\ Charles R Greathouse IV, Feb 04 2013

Formula

Mod[ Sigma [ 4, n ], n ]=0.

Extensions

More terms from Robert G. Wilson v, Jun 09 2000

A066109 Numbers k such that sigma_4(k)/sigma_2(k) is prime.

Original entry on oeis.org

4, 9, 20, 25, 169, 289, 961, 1849, 3721, 6889, 11881, 14641, 15625, 17161, 52441, 57121, 66049, 69169, 72361, 96721, 97969, 117649, 130321, 196249, 214369, 253009, 326041, 351649, 358801, 383161, 410881, 418609, 426409, 434281, 491401
Offset: 1

Views

Author

Labos Elemer, Dec 05 2001

Keywords

Comments

Numbers k such that A001159(k)/A001157(k) is prime.
Except for the 3rd term 20, below 10000000 all the other terms are even powers of a prime. These primes are listed in A066111. It is not known whether other numbers similar to 20 exist or not.
20 is the only exception within the first 2000 terms. - Amiram Eldar, Feb 25 2025

Examples

			For k = 20: divisors(20) = {20, 10, 5, 4, 2, 1}, sigma_4 = 160000 + 10000 + 625 + 256 + 16 + 1 = 170898, sigma_2 = 400 + 100 + 25 + 16 + 4 + 1 = 546; p = 170898/546 = 73 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[s = DivisorSigma[4, n]; z = DivisorSigma[2, n]; If[PrimeQ[s/z], Print[{n, s, z, s/z}]], {n, 1, 10000000}]
    Select[Range[500000],PrimeQ[DivisorSigma[4,#]/DivisorSigma[2,#]]&] (* Harvey P. Dale, May 02 2011 *)
  • PARI
    isok(k) = { my(f=sigma(k, 4)/sigma(k, 2)); !frac(f) && isprime(f) } \\ Harry J. Smith, Nov 16 2009

A066110 Primes of the form sigma_4(k)/sigma_2(k), arising in A066109.

Original entry on oeis.org

13, 73, 313, 601, 28393, 83233, 922561, 3416953, 13842121, 47451433, 141146281, 212601841, 234750601, 294482761, 2750006041, 3262751521, 4362404353, 4784281393, 5236041961, 9354855121, 9597826993, 13564461457, 16936647121
Offset: 1

Views

Author

Labos Elemer, Dec 05 2001

Keywords

Examples

			For k = 20: divisors(20) = {20,10,5,4,2,1}, sigma_4(20) = 160000 + 10000 + 625 + 256 + 16 + 1 = 170898, sigma_2(20) = 400 + 100 + 25 + 16 + 4 + 1 = 546; p = 170898/546 = 73 is prime, the 2nd term.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[4, n]; z=DivisorSigma[2, n]; If[PrimeQ[s/z], Print[s/z]], {n, 1, 10000000}]
    Select[Table[DivisorSigma[4,n]/DivisorSigma[2,n],{n,200000}],PrimeQ] (* Harvey P. Dale, Jan 31 2022 *)
  • PARI
    { n=0; for (m=1, 10^9, if (frac(f=sigma(m, 4)/sigma(m, 2)), next); if (isprime(f), write("b066110.txt", n++, " ", f); if (n==250, return)) ) } \\ Harry J. Smith, Feb 01 2010

Formula

Primes of the form A001159(A066109(k))/A001157(A066109(k)).

A066111 Prime powers m such that sigma_4(m^2)/sigma_2(m^2) is prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 31, 43, 61, 83, 109, 121, 125, 131, 229, 239, 257, 263, 269, 311, 313, 343, 361, 443, 463, 503, 571, 593, 599, 619, 641, 647, 653, 659, 701, 797, 811, 853, 953, 967, 1009, 1031, 1039, 1063, 1123, 1373, 1459, 1483, 1499, 1663, 1669, 1693
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Comments

Numbers m = p^w such that A001159(m^2)/A001157(m^2) is prime, i.e., m^2 is in A066109.
Also m is the square root of a term from A066109 (omitting the term 20). Apart from 20, up to 10000000 A066109 consists of squares of prime powers.

Examples

			m=125: m^2 = 15625 = A066109(13), sigma_4(15625) = 59700165039453751, sigma_2(15625) = 254313151, sigma_4/sigma_2 = 234750601 = A066110(13) is prime. Observe also that sigma_2 is close to sigma_4/sigma_2.
		

Crossrefs

Programs

  • PARI
    isok(m) = isprimepower(m) && isprime(sigma(m^2, 4)/sigma(m^2, 2)); \\ Michel Marcus, Apr 06 2020

A066284 a(n) = A066135(4*n).

Original entry on oeis.org

34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 386, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194
Offset: 1

Views

Author

Labos Elemer, Dec 11 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(4n) is the least prime factor of (1 + 16^n). (See the Comment in A066135.) - Jonathan Sondow, Nov 23 2012

Examples

			First 3 terms correspond to entries of other sequences as follows: a(1)=A046763(2), a(2)=A055712(2), a(3)=A055716(2).
From _Michael De Vlieger_, Jul 17 2017: (Start)
First position of values, with observations pertaining to values for 1 <= n <= 3000:
    Value   Position   Observations:
    --------------------------------
       34     1        All odd.
       84     2        In A047235.
      194     6        In A017593.
      228    12
      386    36
     1282    72
     1538   144
     3084   288
   147468   576
     1956   864
  1046532  1152
    24578  2304
     3252  2880
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[4 n, m], m] > 0, m++]; m, {n, 66}] (* Michael De Vlieger, Jul 17 2017 *)
  • PARI
    a(n) = {n *= 4; my(m = 2); while (sigma(m, n) % m, m++); m;} \\ Michel Marcus, Oct 02 2016

Formula

a(n) = Min{x : sigma_4n(x) mod x = 0, x > 1}
Previous Showing 31-40 of 73 results. Next