cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 73 results. Next

A373039 a(n) = (A372966(n) - 1)/240.

Original entry on oeis.org

0, 1, 27, 257, 1625, 6508, 24010, 65793, 177174, 391626, 893101, 1665644, 3398759, 5786411, 10531652, 16843009, 29065308, 42698935, 70764303, 100231882, 155608837, 215237342, 326294606, 426404460, 634767250, 819100920, 1162438641, 1480961067, 2084357107, 2538128133
Offset: 1

Views

Author

Hugo Pfoertner, May 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(8*e + 4) + 1)/(p^4 + 1); a[1] = 0; a[n_] := (Times @@ f @@@ FactorInteger[n] - 1) / 240; Array[a, 30] (* Amiram Eldar, Jan 08 2025 *)
  • PARI
    a(n) = (sigma(n^2, 8)/sigma(n^2, 4)-1)/240

Formula

From Amiram Eldar, Jan 08 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-8)/zeta(s-4) - 1)/240.
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/(2160*zeta(5)) = 0.000447372... . (End)

A064377 Numbers n such that sigma_4(n) > phi(n)^5.

Original entry on oeis.org

2, 3, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 48, 50, 54, 56, 60, 66, 70, 72, 78, 80, 84, 90, 96, 100, 102, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 294, 300, 306, 312, 330, 336, 342, 360, 378, 390, 396, 420, 450, 462, 480, 504, 510, 540, 546, 570, 600, 630, 660, 690, 714, 720, 750, 780, 840, 870, 930, 990, 1020, 1050, 1170, 1260, 1470, 1680, 2310
Offset: 1

Views

Author

Labos Elemer, Sep 27 2001

Keywords

Comments

It is conjectured that there are no other solutions.
This sequence is finite, since by Grönwall's theorem sigma_4(n) <= sigma(n)^4 << (n log log n)^4 but phi(n)^5 >> (n/log log n)^5. - Charles R Greathouse IV, Nov 19 2015

Crossrefs

Programs

  • Mathematica
    Select[Range[2400],DivisorSigma[4,#]>EulerPhi[#]^5&] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    is(n)=my(f=factor(n)); sigma(f, 4)>eulerphi(f)^5 \\ Charles R Greathouse IV, Nov 19 2015

Formula

Solutions to A001159(n) > phi(n)^5.

A066134 Numbers from A066112 that are neither square nor twice a square, i.e., are not in A028982 but are in A028983.

Original entry on oeis.org

48, 180, 245, 432, 500, 605, 931, 980, 1200, 1280, 1620, 1805, 2205, 2352, 2420, 3380, 3724, 3888, 3920, 4500, 4655, 5445, 5780, 5808, 6125, 6845, 7203, 7220, 7936, 8112, 8379, 8405, 8820, 9072, 9251, 9680, 10580, 10800, 11520, 11760, 12500
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Examples

			180 is neither square nor twice a square, but sigma_4(180)/sigma_2(180) = 1135275414/49686 = 22849 = 73*313.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := !IntegerQ[Sqrt[k]] && !IntegerQ[Sqrt[k/2]] && IntegerQ[r = DivisorSigma[4, k]/DivisorSigma[2, k]] && !PrimeQ[r]; Select[Range[12500], q] (* Amiram Eldar, Feb 23 2025 *)
  • PARI
    { n=0; for (m=1, 10^9, if (issquare(m) || issquare(m/2), next); if (frac(f=sigma(m, 4)/sigma(m, 2)), next); if (!isprime(f), write("b066134.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 02 2010

A074632 Numbers k such that the sum of 2nd, 3rd, 4th and 5th powers of divisors of k are divisible by sum of divisors of k.

Original entry on oeis.org

1, 20, 64, 500, 729, 1024, 1280, 4096, 4352, 14580, 15625, 32000, 39168, 46656, 47360, 59049, 65536, 117649, 144640, 161024, 262144, 312500, 364500, 509184, 531441, 746496, 796797, 933120, 1000000, 1180980, 1184000, 1449216, 1771561
Offset: 1

Views

Author

Labos Elemer, Aug 27 2002

Keywords

Examples

			For k = 20: sigma(k) = 42 ,sigma_2(k) = 546 = 13 * 42, sigma_3(k) = 9198 = 219 * 42, sigma_4(k) = 170898 = 4069 * 42, sigma_5(k) = 3304182 = 78671 * 42.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000000],And@@Divisible[DivisorSigma[Range[2,5],#], DivisorSigma[ 1,#]]&] (* Harvey P. Dale, Jan 01 2012 *)
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f)); for(k = 2, 5, if(sigma(f, k) % s, return(0))); 1; }  \\ Amiram Eldar, Jun 15 2024

A077457 a(n) = sigma_4(n^4)/sigma_2(n^4).

Original entry on oeis.org

1, 205, 5905, 52429, 375601, 1210525, 5649505, 13421773, 38742049, 76998205, 212601841, 309593245, 810932305, 1158148525, 2217923905, 3435973837, 6951703105, 7942120045, 16936647121, 19692384829, 33360327025, 43583377405, 78163228705, 79255569565, 146719125601
Offset: 1

Views

Author

Benoit Cloitre, Nov 30 2002

Keywords

Comments

sigma_y(n^x) divides sigma_x(n^x) for all n if y divides x.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(8*e+2) + 1)/(p^2 + 1); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 25] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    a(n)=sumdiv(n^4,d,d^4)/sumdiv(n^4,d,d^2)
    
  • PARI
    a(n) = my(f=factor(n^4)); sigma(f, 4)/sigma(f, 2); \\ Michel Marcus, Sep 09 2020

Formula

a(n) = A001159(n^4)/A001157(n^4).
Multiplicative with a(p^e) = (p^(8*e+2) + 1)/(p^2 + 1). - Amiram Eldar, Sep 09 2020
Sum_{k=1..n} a(k) ~ c * n^9, where c = (zeta(9)/9) * Product_{p prime} (1 - 1/p^3 + 1/p^5 - 1/p^7) = 0.09549806119... . - Amiram Eldar, Oct 28 2022

A078553 Largest prime dividing sigma(4,n).

Original entry on oeis.org

17, 41, 13, 313, 41, 1201, 257, 73, 313, 7321, 41, 14281, 1201, 313, 41, 41761, 73, 3833, 313, 1201, 7321, 139921, 257, 601, 14281, 193, 1201, 353641, 313, 1129, 241, 7321, 41761, 1201, 73, 10529, 3833, 14281, 313, 10313, 1201, 521, 7321, 313
Offset: 2

Views

Author

Labos Elemer, Dec 05 2002

Keywords

Examples

			Observe nontrivial frequent occurrence of several primes like 73,313,14281, etc.
		

Crossrefs

Programs

  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; a[n_] := gpf[DivisorSigma[4, n]]; Array[a, 50, 2] (* Amiram Eldar, Aug 01 2019 *)

Formula

a(n) = A006530(A001159(n)).

A319278 Square array sigma_k(n) read down antidiagonals: sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 7, 1, 17, 28, 21, 6, 1, 33, 82, 73, 26, 12, 1, 65, 244, 273, 126, 50, 8, 1, 129, 730, 1057, 626, 252, 50, 15, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12
Offset: 1

Views

Author

R. J. Mathar, Sep 16 2018

Keywords

Comments

Equals the square array A082771 without its first column.

Examples

			The array starts in row n=1 with columns k>=1 as:
     1      1      1      1      1      1       1        1
     3      5      9     17     33     65     129      257
     4     10     28     82    244    730    2188     6562
     7     21     73    273   1057   4161   16513    65793
     6     26    126    626   3126  15626   78126   390626
    12     50    252   1394   8052  47450  282252  1686434
     8     50    344   2402  16808 117650  823544  5764802
    15     85    585   4369  33825 266305 2113665 16843009
		

Crossrefs

Cf. A082771, A023887 (diagonal), A109974, A319194 (partial column sums).

Programs

  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)

Formula

sigma_k(n) = sum_{d|n} d^k.

A321598 a(n) = Sum_{d|n} d*binomial(d+2,3).

Original entry on oeis.org

1, 9, 31, 89, 176, 375, 589, 1049, 1516, 2384, 3147, 4823, 5916, 8437, 10406, 14105, 16474, 22380, 25271, 33264, 37810, 47683, 52901, 68183, 73301, 91100, 100174, 122197, 130356, 161750, 169137, 205593, 219162, 259242, 272714, 330524, 338144, 400719, 421686, 493424
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 14 2018

Keywords

Comments

Inverse Möbius transform of A002417.

Crossrefs

Programs

  • Mathematica
    Table[Sum[d Binomial[d + 2, 3], {d, Divisors[n]}], {n, 40}]
    nmax = 40; Rest[CoefficientList[Series[Sum[x^k (1 + 3 x^k)/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[(2 DivisorSigma[2, n] + 3 DivisorSigma[3, n] + DivisorSigma[4, n])/6, {n, 40}]
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 3*sigma(f, 3) + 2*sigma(f, 2)) / 6; \\ Amiram Eldar, Jan 02 2025

Formula

G.f.: Sum_{k>=1} x^k*(1 + 3*x^k)/(1 - x^k)^5.
G.f.: Sum_{k>=1} k*A000292(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^A000292(k)) = Sum_{n>=1} a(n)*x^n/n.
Dirichlet g.f.: (zeta(s-4) + 3*zeta(s-3) + 2*zeta(s-2))*zeta(s)/6.
a(n) = (2*sigma_2(n) + 3*sigma_3(n) + sigma_4(n))/6.
a(n) = Sum_{d|n} A002417(d).
Sum_{k=1..n} a(k) ~ zeta(5) * n^5 / 30. - Vaclav Kotesovec, Feb 02 2019

A347160 Sum of 4th powers of distinct prime divisors of n that are <= sqrt(n).

Original entry on oeis.org

0, 0, 0, 16, 0, 16, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 97, 0, 16, 81, 16, 0, 97, 625, 16, 81, 16, 0, 722, 0, 16, 81, 16, 625, 97, 0, 16, 81, 641, 0, 97, 0, 16, 706, 16, 0, 97, 2401, 641, 81, 16, 0, 97, 625, 2417, 81, 16, 0, 722, 0, 16, 2482, 16, 625, 97, 0, 16, 81, 3042
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # <= Sqrt[n] && PrimeQ[#] &], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[Sum[Prime[k]^4 x^(Prime[k]^2)/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} prime(k)^4 * x^(prime(k)^2) / (1 - x^prime(k)).

A347172 Sum of 4th powers of odd divisors of n that are < sqrt(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 82, 1, 1, 707, 1, 1, 82, 1, 626, 82, 1, 1, 82, 626, 1, 82, 1, 1, 707, 1, 1, 82, 1, 626, 82, 1, 1, 82, 626, 2402, 82, 1, 1, 707, 1, 1, 2483, 1, 626, 82, 1, 1, 82, 3027, 1, 82, 1, 1, 707
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, #^4 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 75}]
    nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^4 x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=1} (2*k - 1)^4 * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).
Previous Showing 61-70 of 73 results. Next