cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A260447 Numerators in the asymptotic expansion of the Barnes G-function.

Original entry on oeis.org

1, -1, -1, 157, 65911, -918227, -234932171, 592642957, 149463069056137, -16648792617135289, -286497627060094895989, 3538603031642540133299, 57674522110226646157873673, -713986824035720029666660757, -6478234620955890989297122598683
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 10 2015

Keywords

Crossrefs

Cf. A260448 (denominators), A000178, A001163, A001164.

Programs

  • Mathematica
    Numerator[Exp[Series[LogBarnesG[x] - 1/12 - x + 3 x^2/4 + Log[Glaisher] + Log[2 Pi]/2 - x Log[2 Pi]/2 - 5 Log[x]/12 + x Log[x] - x^2 Log[x]/2, {x, Infinity, 20}]][[3]]]

Formula

G(x) ~ exp^(-3*x^2/4 + x + zeta'(-1)) * x^(x^2/2 - x + 5/12) * (2*Pi)^((x-1)/2) * (1 + (-1/12)/x + (-1/1440)/x^2 + (157/51840)/x^3 + (65911/87091200)/x^4 + ...).

A260448 Denominators in the asymptotic expansion of the Barnes G-function.

Original entry on oeis.org

1, 12, 1440, 51840, 87091200, 1045094400, 376233984000, 902961561600, 166867296583680000, 18021668031037440000, 140569010642092032000000, 1686828127705104384000000, 8501613763633726095360000000, 102019365163604713144320000000, 208119504933753614814412800000000
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 10 2015

Keywords

Comments

10^(2m)|a(n) where 5m <= n <= 5m+4, m>=0. Example: for m=4, 20<= n <= 24, the values of a(20) to a(24) are divisible by 10^(10). - G. C. Greubel, Dec 15 2015

Crossrefs

Cf. A260447 (numerators), A000178, A001163, A001164.

Programs

  • Mathematica
    Denominator[Exp[Series[LogBarnesG[x] - 1/12 - x + 3 x^2/4 + Log[Glaisher] + Log[2 Pi]/2 - x Log[2 Pi]/2 - 5 Log[x]/12 + x Log[x] - x^2 Log[x]/2, {x, Infinity, 20}]][[3]]]

Formula

G(x) ~ exp^(-3*x^2/4 + x + zeta'(-1)) * x^(x^2/2 - x + 5/12) * (2*Pi)^((x-1)/2) * (1 + (-1/12)/x + (-1/1440)/x^2 + (157/51840)/x^3 + (65911/87091200)/x^4 + ...).

A272097 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation.

Original entry on oeis.org

1, 0, 0, 2, 6, 8, 7, 9, 1, 3, 2, 4, 1, 5, 2, 7, 9, 4, 1, 5, 8, 4, 3, 4, 5, 5, 4, 6, 4, 3, 4, 5, 2, 0, 9, 6, 1, 8, 1, 8, 1, 0, 4, 0, 3, 1, 9, 2, 3, 6, 7, 8, 8, 8, 3, 7, 2, 8, 6, 6, 5, 6, 7, 3, 8, 0, 6, 4, 7, 7, 8, 5, 0, 6, 2, 1, 1, 1, 0, 0, 7, 3, 8, 5, 3, 8, 1, 0, 9, 5, 8, 8, 6, 6, 7, 8, 2, 6, 3, 5, 8, 8, 0, 1, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 20 2016

Keywords

Comments

Product_{k=1..n} (k! / (sqrt(2*Pi*k) * k^k * exp(-k))) ~ c * n^(1/12), where c = exp(1/12)*(2*Pi)^(1/4) / A^2 = A213080 = 1.04633506677050318098095065697776..., where A = A074962 is the Glaisher-Kinkelin constant.
Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n) + 1/(288*n^2)))) = exp(1/12) * (2*Pi)^(1/4) * abs(Gamma(25/24 + i/24))^2 / A^2 = 0.997305599490607358564533726617761207426462854447669845..., where A = A074962 is the Glaisher-Kinkelin constant and i is the imaginary unit.

Examples

			1.00268791324152794158434554643452096181810403192367888372866567380647785...
		

Crossrefs

Programs

  • Mathematica
    Product[n!/(n^n/E^n*Sqrt[2*Pi*n]*(1 + 1/(12*n))), {n, 1, Infinity}]
    RealDigits[E^(1/12)*(2*Pi)^(1/4)*Gamma[13/12]/Glaisher^2, 10, 120][[1]]

Formula

Product_{n>=1} (n! / (sqrt(2*Pi*n) * n^n * exp(-n) * (1 + 1/(12*n)))).
Equals exp(1/12) * (2*Pi)^(1/4) * Gamma(1/12) / (12 * A^2), where A = A074962 is the Glaisher-Kinkelin constant.

A122253 Binet's factorial series. Denominators of the coefficients of a convergent series for the logarithm of the Gamma function.

Original entry on oeis.org

12, 12, 360, 60, 280, 168, 5040, 180, 11880, 264, 240240, 10920, 13104, 720, 367200, 3060, 813960, 15960, 1053360, 27720, 3825360, 16560, 5023200, 163800, 982800, 3024, 2630880, 6960, 33227040, 229152, 116867520, 235620, 282744, 2520, 1612119600, 7676760, 46060560
Offset: 1

Views

Author

Paul Drees (zemyla(AT)gmail.com), Aug 27 2006

Keywords

Comments

See A122252 for references and formulas.

Examples

			c(1) = (1/1)*Integral_{x=0..1} x*(x - 1/2) dx = Integral_{x=0..1} (x^2 - x/2) dx = (x^3/3 - x^2/4)|{x=1} - (x^3/3 - x^2/4)|{x=0} = 1/12.
		

Crossrefs

Cf. A122252 (numerators), A001163, A001164.

Programs

  • Maple
    r := n -> add((-1)^(n-j)*Stirling1(n,j)*j/((j+1)*(j+2)), j = 1..n)/(2*n):
    a := n -> denom(r(n)); seq(a(n), n = 1..37); # Peter Luschny, Sep 22 2021
  • Mathematica
    Rising[z_, n_Integer/;n>0] := z Rising[z + 1, n - 1]; Rising[z_, 0] := 1; c[n_Integer/;n>0] := Integrate[Rising[x, n] (x - 1/2), {x, 0, 1}] / n;
  • PARI
    a(n) = denominator(sum(j=1, n, (-1)^(n-j)*stirling(n,j,1)*j/((j+1)*(j+2)))/(2*n)); \\ Michel Marcus, Sep 22 2021

Formula

c(n) = (1/n)*Integral_{x=0..1} x^n*(x - 1/2) dx.

A158503 Triangle read by rows: numerators of coefficients of the polynomials phi_s(t) used for asymptotic elementary function expansions of parabolic cylinder functions U(a, x), V(a, x).

Original entry on oeis.org

1, -9, -30, -20, 945, 8028, 19404, 18480, 6160, -1403325, -20545650, -94064328, -200166120, -220540320, -122522400, -27227200, 820945125, 17610977880, 124110533448, 431932849920, 857710030320, 1023307084800, 728175127680, 285558873600, 47593145600
Offset: 0

Views

Author

Chris Kormanyos (ckormanyos(AT)yahoo.com), Mar 20 2009

Keywords

Comments

Each polynomial phi_s(t) has 2s+1 terms. The signs of the polynomials alternate with s with positive coefficients for s even and negative coefficients for s odd.

Examples

			The polynomials phi_0, phi_1, phi_2 and phi_3 are:
  1
  -(t/12)*(9 + 30*t + 20*t^2)
  (t^2/288)*(945 + 8028*t + 19404*t^2 + 18480*t^3 + 6160*t^4)
  -(t^3/51840)*(1403325 + 20545650*t + 94064328*t^2 + 200166120*t^3 + 220540320*t^4 + 122522400*t^5 + 27227200*t^6)
		

References

  • Amparo Gil, Javier Segura and Nico M. Temme, Computing the real parabolic cylinder functions U(a, x), V(a, x), ACM TOMS, Volume 32, Issue 1 (March 2006), pages 70-101.
  • Amparo Gil, Javier Segura and Nico M. Temme, Numerical Methods for Special Functions, SIAM, 2007, pages 378-385. See Equations 12.121 through 12.125

Crossrefs

For denominators see A001164.

Programs

  • Mathematica
    pktop = {1, -9, -30, -20};
    pkbot = {1, 12};
    p = (-t/12) (9 + (30 t) + (20 (t^2)));
    Do[pk = -(4 (t^2) ((t + 1)^2)) D[p, t] - ((1/4) Integrate[((20 (t^2)) + (20 t) + 3) p, {t, 0, t}]);
    p = Together[Simplify[pk]];
    Do[pktop = Append[pktop, Coefficient[Expand[Numerator[p]], t^n]], {n, k, (2 k) + k, 1}];
    pkbot = Append[pkbot, Denominator[p]];
    Print[k], {k, 2, 10, 1}];

Formula

phi_s+1(t) = ( -4*t^2*(t + 1)^2 * d/dt[phi_s(t)] ) - (1/4)*Integral_{T=0..t} (20*T^2 + 20*T + 3)*phi_s(T) dT
phi_0 = 1, phi_-1 = 0

A177677 The maximum integer dimension in which the volume of the hypersphere of radius n remains larger than 1.

Original entry on oeis.org

12, 62, 147, 266, 419, 607, 828, 1084, 1375, 1699, 2057, 2450, 2877, 3338, 3833, 4362, 4926, 5523, 6155, 6821, 7521, 8256, 9024, 9827, 10664, 11535, 12440, 13379, 14353, 15360, 16402, 17478, 18588, 19732, 20911, 22123, 23370, 24651, 25966, 27315
Offset: 1

Views

Author

Michel Lagneau, May 10 2010

Keywords

Comments

The volume of the d-dimensional hypersphere of radius n is V= Pi^(d/2) * n^d / Gamma(1 + d/2).
For fixed radius, V -> 0 as d->infinity, so there is a dimension d for which V(n,d) > 1 but V(n,d+1) < 1, which defines the entry in the sequence.

Examples

			a(n=2)=62 because Pi^(62/2) * 2^62/GAMMA(1 + (62/2)) =1.447051 and Pi^(63/2)* 2^63 / Gamma(1 + (63/2)) =0.9103541.
		

Crossrefs

Programs

  • Maple
    with(numtheory): n0:=50: T:=array(1..n0): for r from 1 to n0 do: x:=2: for n from 1 to 1000000 while(x>=1) do: x:= floor(evalf((r^n * Pi^(n/2))/GAMMA(1 + n/2))):k:=n:od:T[r]:=k-1:od:print(T):

Formula

a(n) = max {d: Pi^d/2 * n^d / Gamma(1+d/2) > 1}.

Extensions

Use of variables standardized. Definition simplified, comments tightened, unspecific reference and superfluous parentheses removed - R. J. Mathar, Oct 20 2010

A362114 Truncate Stirling's asymptotic series for 2! after n terms and round to the nearest integer.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 6, 6, -37, -38, 388, 406, -4245, -4439, 51286, 53609, -676862, -707319, 9728466, 10163563, -151746398, -158496540, 2560628713, 2673985990, -46607156242, -48661551041, 912537268911
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2023

Keywords

Comments

See A362113 for further information.

Crossrefs

A362115 Truncate Stirling's asymptotic series for 3! after n terms and round to the nearest integer.

Original entry on oeis.org

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 9, 9, -21, -22, 246, 253, -2243, -2313, 22563, 23254, -241529, -248887, 2755875, 2839370, -33440529, -34448635, 430760619
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2023

Keywords

Comments

See A362113 for further information.

Crossrefs

A154268 Ratios of consecutive denominators of Stirling's expansion for the Gamma function.

Original entry on oeis.org

12, 24, 180, 48, 84, 360, 12, 96, 5940, 168, 156, 720, 12, 24, 107100, 192, 228, 11880, 12, 336, 4140, 312, 12, 1440, 84, 24, 516780, 48, 372, 214200, 12
Offset: 0

Views

Author

Paul Curtz, Jan 06 2009

Keywords

Comments

The sequence is finite because the ratios are no longer integer after a(30).
All entries are multiples of 12.
a(n) mod 9 is one of {0,3,6}.

Programs

  • Mathematica
    dd = Denominator[ CoefficientList[ Normal[ Series[ E^x*x^(x-1/2)*x! / Sqrt[2*Pi], {x, Infinity, 31}]] /. x -> 1/x, x]]; Rest[ dd / RotateRight[dd] ] (* Jean-François Alcover, Aug 03 2012 *)

Formula

a(n) = A001164(n+1)/A001164(n).

Extensions

Edited and extended by R. J. Mathar, Sep 07 2009
Previous Showing 21-29 of 29 results.