cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A281784 Number of permutations of size n avoiding the three vincular patterns 2-41-3, 3-14-2 and 3-41-2.

Original entry on oeis.org

1, 2, 6, 21, 82, 346, 1547, 7236, 35090, 175268, 897273, 4690392, 24961300, 134917123, 739213795, 4099067786, 22973964976, 129998127216, 741951610676, 4267733183951, 24722711348105, 144147076572858, 845460619537567, 4986014094568416, 29553202933497989, 175988793822561947, 1052569034807964425, 6320797287983675428, 38100643422386086309, 230476496238489596293, 1398812189780917895946, 8516159717810715750712, 51999675864641162206960, 318388601290603235387353, 1954555567303560704554767, 12028490623505389875097231, 74197729371621673254309374, 458706129189543207063584184, 2841808950641424998337843123
Offset: 1

Views

Author

Mathilde Bouvel, Mar 01 2017

Keywords

Comments

a(n) is the number of permutations of size n that are both Baxter and twisted Baxter.
a(n) is also the number of excursions in the positive quarter-plane, using n steps, and with step (multi-)set {(-1,0),(0,-1),(1,-1),(1,0),(0,1),(0,0),(0,0)}.

Examples

			For n=4, there are a(4)=21 permutations that avoid 2-41-3, 3-14-2 and 3-41-2 (all permutations of size 4 except 2413, 3142 and 3412).
		

Crossrefs

Baxter and twisted Baxter permutations are both enumerated by the Baxter numbers A001181.

Programs

  • Maple
    S:=x*y*z:
    s[1]:=1:
    for en from 2 to 200 do
    x*y/(1-y)*(subs(y=1,S))-x/(1-y)*S+x*z*S+x*y*z/(1-z)*(subs(z=1,S))-x*y*z/(1-z)*S;
    S:=normal(%):
    s[en]:=subs(x=1,z=1,y=1,S);
    od:
    # Veronica Guerrini, Mar 01 2017

Formula

The generating function for a(n) is A(x;1,1) where A(x;y,z) satisfies A(x;y,z) = x*y*z + (x/(1-y))*(y*A(x;1,z) - A(x;y,z)) + x*z*A(x;y,z) + (x*y*z/(1-z))*(A(x;y,1) - A(x;y,z)).
Consequently, neither A(x;1,1) nor A(x;y,z) are D-finite (see preprint of Bouvel et al.).

A342284 Number of friendly 3-watermelons of length n.

Original entry on oeis.org

1, 0, 2, 6, 24, 110, 550, 2922, 16242, 93520, 553980, 3359384, 20777588, 130696662, 834244830, 5393850898, 35272830054, 233016356788, 1553427829684, 10441803227652, 70715551631992, 482201548554776, 3308810614160224, 22836540660981088, 158458108961055864
Offset: 0

Views

Author

N. J. A. Sloane, Mar 19 2021

Keywords

References

  • Essam, J.W. and Guttmann, A.J., 1995. Vicious walkers and directed polymer networks in general dimensions. Physical Review E, 52(6), pp. 5849ff. See (63).
  • Iwan Jensen, Three friendly walkers, Journal of Physics A: Mathematical and Theoretical, Volume 50:2 (2017), #24003, 14 pages; https://doi.org/10.1088/1751-8121/50/2/024003. See F_3(x).

Crossrefs

Formula

G.f. = 1 - 2*x + G(x), where G(x) = 2*x+2*x^2+6*x^3+24*x^4+110*x^5+550*x^6+... is the g.f. for A342282.

A347678 Triangle read by rows: T(n,k) (1 <= k <= n) = number of n X k Baxter matrices in which all row sums are 1.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 32, 22, 1, 20, 100, 172, 92, 1, 30, 240, 744, 956, 422, 1, 42, 490, 2364, 5328, 5492, 2074, 1, 56, 896, 6174, 21236, 37618, 32490, 10754, 1, 72, 1512, 14056, 68030, 181140, 264612, 197144, 58202, 1, 90, 2400, 28896, 186462, 690444, 1497544, 1863222, 1222642, 326240
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2021

Keywords

Crossrefs

The main diagonal is A001181.
Cf. A347679.

Extensions

a(29)-a(55) from Michael S. Branicky, Sep 17 2021

A350265 a(n) = hypergeometric([-n - 1, 1 - n, -n], [1, 3], -1).

Original entry on oeis.org

1, 1, 3, 12, 55, 276, 1477, 8296, 48393, 291010, 1794320, 11297760, 72413640, 471309944, 3108745785, 20746732688, 139899430981, 952127880138, 6533934575018, 45175430719240, 314467004704818, 2202576030828096, 15514620388706488, 109851319423632192, 781531332298053400
Offset: 0

Views

Author

Peter Luschny, Dec 28 2021

Keywords

Crossrefs

Cf. A000217, A002378, A277188, A001181 (Baxter permutations).

Programs

  • Maple
    a := proc(n) option remember; if n < 2 then 1 else ((n + 1)*((7*n^2 + 7*n - 2)*a(n - 1) + 8*(n - 2)*n*a(n - 2)))/(n*(n + 2)*(n + 3)) fi end:
    seq(a(n), n = 0..24);
  • Mathematica
    a[n_] := HypergeometricPFQ[{-n - 1, 1 - n, -n}, {1, 3}, -1];
    Table[a[n], {n, 0, 24}]
  • Python
    from sympy import hyperexpand
    from sympy.functions import hyper
    def A350265(n): return hyperexpand(hyper((-n-1,1-n,-n),(1,3),-1)) # Chai Wah Wu, Dec 29 2021

Formula

a(n) * A000217(n) = Sum_{k=0..n-1} binomial(n + 1, k) * binomial(n, k) * binomial(n + 1, k + 2).
a(n) * A002378(n) = Sum_{k=0..n-1} binomial(n + 1, k) * binomial(n + 1, k + 1) * binomial(n + 1, k + 2).
For a recurrence see the Maple program.
a(n) ~ 2^(3*n+4) / (Pi*sqrt(3)*n^3). - Vaclav Kotesovec, Apr 27 2024

A368733 a(n) = hypergeom([-1 - n, -n, 1 - n], [2, 3], -3).

Original entry on oeis.org

1, 1, 4, 22, 148, 1132, 9484, 85066, 804556, 7939738, 81128800, 853424464, 9201391456, 101327618056, 1136518296892, 12954283592578, 149770265417692, 1753615603901818, 20766700361401336, 248449277456597908, 3000039734827403608, 36532024054221028576, 448294209318801516064
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[HypergeometricPFQ[{-1-n, -n, 1-n}, {2, 3}, -3], {n, 0, 30}]
    a[0] := 1; a[n_] := 3^n*Sum[(1/3)^k*Binomial[n + 1, k - 1]*Binomial[n + 1, k]*Binomial[n + 1, k + 1]/(Binomial[n + 1, 1]*Binomial[n + 1, 2]), {k, 1, n}]; Table[a[n], {n, 0, 22}] (* Detlef Meya, May 28 2024 *)
  • Python
    from sympy import hyperexpand
    from sympy.functions import hyper
    def A368733(n): return hyperexpand(hyper((-1-n,-n,1-n),(2,3),-3)) # Chai Wah Wu, Jan 04 2024

Formula

a(n) ~ (4 + 3^(4/3) + 3^(5/3))^(n + 5/3) / (3^(11/6) * Pi * n^4).
a(0) = 1, a(n) = 3^n*Sum_{k=1..n} (1/3)^k*binomial(n + 1, k - 1)*binomial(n + 1, k)*binomial(n + 1, k + 1)/(binomial(n + 1, 1)*binomial(n + 1, 2)). - Detlef Meya, May 28 2024

A217216 Dimension of algebraic generators of the algebra "Baxter" of order n.

Original entry on oeis.org

0, 1, 1, 3, 11, 47, 221, 1113, 5903, 32607, 186143, 1092015, 6555515, 40137219, 249984481, 1580468321, 10125395007, 65639436955, 430048061915, 2844592155631, 18979693010495, 127641472658231, 864645413540671, 5896221199266519, 40455246946190079
Offset: 0

Views

Author

N. J. A. Sloane, Oct 03 2012

Keywords

Crossrefs

Cf. A001181.

Programs

  • Mathematica
    nmax = 25;
    1-1/(1+Sum[HypergeometricPFQ[{-1-n, 1-n, -n}, {2, 3}, -1] x^n, {n, nmax}]) + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Sep 26 2018 *)
  • PARI
    baxter(n) = sum(k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2)));
    lista(m) = {u = t + t*O(t^m); b = 1 + sum(n=1, m, baxter(n)*u^n); gfbc = 1 - 1/b; for (n=0, m, print1(polcoeff(gfbc, n, t), ", "));}
    \\ Michel Marcus, Feb 16 2013

Formula

Giraudo gives a generating function.
a(n) ~ c * 8^n / n^4, where c = 4.21514033443045415032... - Vaclav Kotesovec, Apr 27 2024

Extensions

More terms from Michel Marcus, Feb 16 2013

A217217 Dimension of totally primitive elements of the algebra "Baxter" of order n.

Original entry on oeis.org

0, 1, 0, 1, 4, 19, 96, 511, 2832, 16215, 95374, 573837, 3520228, 21961119, 139038824, 891817687, 5787091552, 37946582995, 251173847170, 1676831257693, 11282156358500, 76453813499219, 521508969157826, 3578990500062417, 24700214881378152, 171359711873508367
Offset: 0

Views

Author

N. J. A. Sloane, Oct 03 2012

Keywords

References

  • S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees, Journal of Algebra, Volume 360, 15 June 2012, Pages 115-157.

Crossrefs

Cf. A001181.

Programs

  • PARI
    baxter(n) = sum(k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2)));
    lista(m) = {u = t + t*O(t^m); b = 1 + sum(n=1, m, baxter(n)*u^n); gfbt = (b-1)/b^2; for (n=0, m, print1(polcoeff(gfbt, n, t), ", "));}
    \\ Michel Marcus, Feb 16 2013

Formula

Giraudo gives a generating function.

Extensions

More terms from Michel Marcus, Feb 16 2013

A347546 Number of involutions of doubly alternating Baxter permutations of length n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 8, 12, 16, 32, 44, 84, 105, 231, 292, 636, 768, 1792, 2166, 5080, 6012, 14592, 17234, 42198, 49336, 123088, 143536, 361190, 418971, 1066497, 1234242, 3164870, 3651296, 9436968, 10866726, 28255468, 32469716, 84925632, 97443786, 256131058
Offset: 0

Views

Author

Sook Min, Sep 06 2021

Keywords

Crossrefs

Cf. A001181.

Programs

  • Python
    def b(n):
        if (0<=n<=3):
            return 1
        if (n==4):
            return 2
        if (n%2==1):
          t=0
          for k in range(1, ((n+1)//2)):
              t+=b(2*k-2)*b(n-2*k)
          return t
        else:
            s=0
            for j in range(round(n/4), (n//2)):
                s+=b(4*j-n)*b(n-2*j-1)
            return b(n-1)+s
    for i in range(30):
        print(str(i)+': '+str(b(i)))

A356197 Number of Baxter 3-permutations of length n.

Original entry on oeis.org

1, 1, 4, 28, 260, 2872, 35620, 479508
Offset: 0

Views

Author

Nicolas Bonichon, Jul 29 2022

Keywords

Crossrefs

Cf. A001181.

A363682 Number of plane bipolar posets (i.e., plane bipolar orientations with no transitive edge) with n edges.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 32, 93, 279, 872, 2830, 9433, 32223, 112527, 400370, 1448520, 5320023, 19802827, 74612164, 284238390, 1093757436, 4247742956, 16636921148, 65671960544, 261111950308, 1045172796381, 4209807155949, 17055625810984, 69476952146529, 284467866640048
Offset: 1

Views

Author

Éric Fusy, Jun 16 2023

Keywords

Comments

a(n) is also the number of walks of length n-1 in the quadrant, starting and ending at the origin, with step-set {0,E,S,NW,SE} (where 0 is the stay-step).

Crossrefs

Programs

  • Maple
    A:=proc(n,i,j) option remember:
    if n=0 and i=0 and j=0 then return 1:
    elif n<=0 or j<0 or i<0 then return 0:
    else
    return A(n-1,i,j)+A(n-1,i-1,j)+A(n-1,i,j+1)+A(n-1,i+1,j-1)+A(n-1,i-1,j+1):
    fi:
    end proc:
    seq(A(n-1,0,0),n=1..20);
Previous Showing 31-40 of 44 results. Next