cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 51 results. Next

A276459 Nested radical expansion of Pi: Pi = sqrt(a(1) + sqrt(a(2) + sqrt(a(3) + sqrt(a(4) + ...)))), with a(1) = 7 and 2 <= a(n) <= 6 for n>1.

Original entry on oeis.org

7, 6, 2, 6, 6, 5, 5, 2, 4, 6, 3, 4, 2, 4, 6, 3, 6, 3, 3, 5, 4, 3, 6, 3, 3, 3, 4, 3, 6, 6, 4, 3, 3, 4, 5, 5, 2, 6, 2, 5, 4, 3, 4, 6, 6, 2, 3, 5, 2, 3, 5, 4, 2, 3, 2, 4, 2, 6, 4, 6, 3, 3, 4, 3, 4, 6, 3, 4, 6, 5, 2, 2, 2, 3, 4, 5, 5, 5, 2, 4, 3, 6, 4, 3, 6, 3, 2, 6, 2, 4, 5, 6, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 4, 4, 6, 4, 2, 4, 5, 4, 6, 5, 3
Offset: 1

Views

Author

Yuriy Sibirmovsky, Sep 03 2016

Keywords

Comments

Similar to Bolyai expansion. Uses the fact that for 0

Examples

			Pi^2=7+2+p1, thus a(1)=7;
(2+p1)^2=6+2+p2, thus a(2)=6;
(2+p2)^2=2+2+p3, thus a(3)=2; ... 0<pn<1.
		

Crossrefs

Cf. A000796 (digits), A001203 (continued fraction).

Programs

  • Mathematica
    Nm=100;
    A=Table[1,{j,1,Nm}];
    V=Table[1,{j,1,Nm}];
    P=Pi;
    p0=P;
    Do[p1=Floor[p0^2]-2;
    A[[j]]=p1;
    p0=N[2+p0^2-Floor[p0^2],300],{j,1,Nm}];
    Do[v0=Sqrt[A[[n]]];
    Do[v1=A[[n-j]]+v0;
    v0=Sqrt[v1],{j,1,n-1}];
    V[[n]]=v0,{n,1,Nm}];
    A

A280135 Negative continued fraction of Pi (also called negative continued fraction expansion of Pi).

Original entry on oeis.org

4, 2, 2, 2, 2, 2, 2, 17, 294, 3, 4, 5, 16, 2, 3, 4, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Author

Randy L. Ekl, Dec 26 2016

Keywords

Comments

Appears that these terms are related to continued fraction of Pi through simple transforms; original continued fraction terms X,1 -> negative continued fraction term X+2 (e.g., 15,1->17, and 292,1->294); other transforms are to be determined.

Examples

			Pi = 4 - (1 / (2 - (1 / (2 - (1 / ...))))).
		

References

  • Leonard Eugene Dickson, History of the Theory of Numbers, page 379.

Crossrefs

Cf. A001203 (continued fraction of Pi).
Cf. A133593 (exact continued fraction of Pi).
Cf. A280136 (negative continued fraction of e).

Programs

  • PARI
    \p10000; p=Pi;for(i=1,300,print(i," ",ceil(p)); p=ceil(p)-p;p=1/p )

A292106 Term-by-term products of continued fraction expansion of e and Pi.

Original entry on oeis.org

6, 7, 30, 1, 292, 4, 1, 1, 12, 1, 3, 8, 14, 2, 10, 1, 2, 24, 2, 2, 14, 84, 2, 16, 1, 15, 54, 13, 1, 80, 2, 6, 132, 99, 1, 48, 2, 6, 78, 5, 1, 28, 6, 8, 30, 7, 1, 64, 3, 7, 34, 2, 1, 36, 12, 1, 38, 1, 3, 40, 1, 8, 42, 1, 2, 44, 6, 1, 46, 5, 2, 96, 3, 1, 100, 4
Offset: 0

Author

N. J. A. Sloane, Sep 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax=100},ContinuedFraction[E,nmax]ContinuedFraction[Pi,nmax]] (* Paolo Xausa, Oct 22 2023 *)

Formula

a(n) = A003417(n) * A001203(n).

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A322778 Position at which n first appears in the continued fraction expansion of Pi.

Original entry on oeis.org

4, 6, 1, 10, 13, 11, 2, 14, 24, 21, 36, 15, 9, 7, 3, 16, 53, 26, 27, 30, 33, 19, 32, 20, 59, 22, 50, 29, 35, 28, 64, 45, 49, 40, 71, 51, 58, 107, 55, 93, 57, 23, 47, 41, 18, 111, 60, 37, 106, 46, 82, 119, 86, 91, 44, 72, 25, 39, 67, 74, 61, 65, 78, 154, 69, 204, 89, 169, 167, 105, 198
Offset: 1

Author

N. J. A. Sloane, Jan 04 2019

Keywords

Comments

This is presumably a permutation of the positive integers, and is the inverse permutation to A154883.

Crossrefs

A048292 1-digit terms in the continued fraction for Pi.

Original entry on oeis.org

3, 7, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 3, 1, 4, 2, 6, 6, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 8, 1, 1, 2, 1, 6, 1, 1, 5, 2, 2, 3, 1, 2, 4, 4, 1, 1, 1, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 5, 4, 1, 2, 2, 8, 1, 5, 2, 2, 1, 4, 1, 1, 8
Offset: 1

Keywords

Examples

			A001203 begins (3, 7, 15, 1, 292, 1, ...) so sequence begins (3, 7, 1, 1, ...).
		

Crossrefs

Programs

  • Mathematica
    Select[ContinuedFraction[Pi,200],#<10&] (* Harvey P. Dale, Jan 29 2023 *)

A048293 Positions of 1-digit terms in the continued fraction for Pi (3 is at position 0).

Original entry on oeis.org

0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 81
Offset: 1

Keywords

Crossrefs

A091657 Length of the smallest prefix of the continued fraction expansion for Pi that includes each of 1..n.

Original entry on oeis.org

4, 9, 9, 30, 40, 40, 40, 44, 130, 130, 276, 276, 276, 276, 276, 276, 647, 647, 647, 647, 647, 647, 647, 647, 791, 791, 791, 791, 791, 791, 878, 878, 878, 878, 1008, 1008, 1008, 3041, 3041, 3041, 3041, 3041, 3041, 3041, 3041, 3200, 3200, 3200, 3200, 3200, 3200
Offset: 1

Author

Robert G. Wilson v, Jan 26 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ StringPosition[ ToString[ Union[ ContinuedFraction[Pi, k]]], StringDrop[ ToString[ Table[i, {i, n}]], -1]] == {}, k++ ]; k]; Table[ f[n], {n, 1, 51}]

Formula

a(n) = max(A032523(n), a(n-1)) for n > 1. - Andrew Howroyd, Aug 05 2024

Extensions

Name clarified by Andrew Howroyd, Aug 05 2024

A099643 Continued fraction for Pi + 1/Pi.

Original entry on oeis.org

3, 2, 5, 1, 2, 1, 3, 2, 1, 2, 1, 13, 897, 2, 8, 1, 2, 1, 1, 15, 2, 3, 2, 1, 1, 2, 1, 11, 2, 1117, 1, 12, 2, 1, 1, 2, 1, 18, 4, 187, 22, 1, 3, 3, 3, 14, 1, 2, 3, 1, 78, 3, 1, 1, 65, 3, 1, 4, 2, 2, 2, 1, 3, 16, 2, 5, 5, 2, 1, 4, 1, 3, 883, 1, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 15, 1, 2, 5, 1, 1, 2, 1, 9, 16, 1
Offset: 0

Author

Labos Elemer, Nov 02 2004

Keywords

Comments

Pi and 1/Pi have separately x and 1-shifted-x continued fraction coefficient series. This expansion apparently does not display connection with those of added terms.

Crossrefs

Cf. A001203, A098801 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Pi+1/Pi, 128]
  • PARI
    contfrac(Pi + 1/Pi) \\ Amiram Eldar, Mar 08 2025

Extensions

Offset changed by Andrew Howroyd, Aug 04 2024

A137995 Nearest integer to 1/frac(Pi^A137994(n)), where frac(x) = x - floor(x).

Original entry on oeis.org

7, 159, 270, 308, 745, 758, 796, 1080, 1227, 7805, 13876, 62099, 70718, 86902, 154756
Offset: 1

Author

M. F. Hasler, inspired by Leroy Quet, Apr 05 2008

Keywords

Comments

Sequence A137994 could be defined as "least positive integer such that this one (without rounding) is increasing".
The term a(1)=7 is not surprising (3 + 1/7 = 3.14...) but it comes as a funny surprise that the next term, a(2)=159, matches the next 3 digits of Pi and a(3) just differs by 5 from the next 3 digits!

Crossrefs

Programs

  • PARI
    default(realprecision,10^4); f=1; for(i=1,10^9, frac(Pi^i)
    				

Extensions

a(7) inserted and a(11)-a(15) added by Amiram Eldar, Jun 28 2025

A159824 Continued fraction for Pi^Pi (cf. A073233).

Original entry on oeis.org

36, 2, 6, 9, 2, 1, 2, 5, 1, 1, 6, 2, 1, 291, 1, 38, 50, 1, 2, 5, 4, 1, 2, 2, 1, 5, 1, 4, 13, 2, 1, 4, 3, 3, 1, 2, 25, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 3, 1, 43, 1, 2, 7, 3, 1, 1, 1, 2, 4, 2, 1, 1, 3, 1, 3, 3, 2, 2, 16, 3, 5, 2, 1, 5, 2, 1, 10, 1, 1, 3, 1, 13, 1, 1, 3, 1, 10, 4, 1, 1, 1, 38, 1, 2, 2, 1, 1, 3
Offset: 0

Author

Harry J. Smith, Apr 30 2009

Keywords

Examples

			36.4621596072079117709908260... = 36 + 1/(2 + 1/(6 + 1/(9 + 1/(2 + ...)))).
		

Programs

  • Mathematica
    ContinuedFraction[Pi^Pi,200] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2010 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^Pi); for (n=1, 20001, write("b159824.txt", n-1, " ", x[n])); }

Extensions

Edited by N. J. A. Sloane, Jul 22 2010
Previous Showing 31-40 of 51 results. Next