cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A256510 Primes p such that phi(p-2) = phi(p-1).

Original entry on oeis.org

3, 5, 17, 257, 977, 3257, 5189, 11717, 13367, 22937, 65537, 307397, 491537, 589409, 983777, 1659587, 2822717, 3137357, 5577827, 6475457, 7378373, 8698097, 10798727, 32235737, 37797437, 39220127, 39285437, 51555137, 52077197, 56992553, 63767927, 70075997
Offset: 1

Views

Author

Jaroslav Krizek, Mar 31 2015

Keywords

Comments

First 5 Fermat primes from A019434 are terms of this sequence.
a(2) = 5 is only term of a(n) such that a(n) - 2 is a prime q, i.e., prime 3 is only prime q such that phi(q) = phi(q+1).
If there are any other Fermat primes, they will not be in the sequence. - Robert Israel, Mar 31 2015

Examples

			Prime 17 is in the sequence because phi(15) = phi(16) = 8.
		

Crossrefs

Programs

  • Magma
    [n: n in [3..10^7] |  IsPrime(n) and EulerPhi(n-2) eq EulerPhi(n-1)];
  • Maple
    with(numtheory): A256510:=n->`if`(isprime(n) and phi(n-2) = phi(n-1), n, NULL): seq(A256510(n), n=1..10^5); # Wesley Ivan Hurt, Mar 31 2015
  • Mathematica
    Select[Prime@ Range@ 100000, EulerPhi[# - 2] == EulerPhi[# - 1] &] (* Michael De Vlieger, Mar 31 2015 *)

A257865 Smallest k such that phi(k) = n*phi(k+1), where phi(n) = A000010(n) gives the value of Euler's totient function at n.

Original entry on oeis.org

1, 5, 119, 629, 17907119
Offset: 1

Views

Author

Felix Fröhlich, May 11 2015

Keywords

Comments

From Manfred Scheucher, May 27 2015: (Start)
a(6)>=3*10^8 (calculation)
a(7)>=3.5*10^13, a(8)>=4.5*10^25, a(9)>=3.0*10^47, and so on... (doubly exponential lower bound, see uploaded pdf)
239719159679 and 239742643139 admit a ratio of 5.998... and 6.008..., resp.
There might be a relation to the sequence A098026. (End)

Examples

			a(3) = 119, because phi(119) == 3*phi(120) = 96 and 119 is the smallest k where this equality holds for n = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[EulerPhi[k] != n EulerPhi[k + 1], k++]; k, {n, 4}] (* Michael De Vlieger, May 12 2015 *)
  • PARI
    a(n) = my(k=1); while(eulerphi(k)!=n*eulerphi(k+1), k++); k

Formula

a(n) >= exp(exp(c(n-3))) with c=exp(gamma) and gamma being the Euler-Mascheroni_constant (see pdf). - Manfred Scheucher, May 27 2015

A259397 Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have phi(a + b) = phi(n), where phi(n) is the Euler totient function of n.

Original entry on oeis.org

6, 12, 14, 28, 30, 48, 62, 124, 126, 222, 224, 254, 448, 476, 496, 510, 768, 876, 1022, 1792, 1806, 2032, 2034, 2046, 2625, 2850, 2898, 3204, 3246, 3560, 3705, 3850, 4064, 4094, 7722, 7744, 7920, 7980, 7992, 8060, 8094, 8136, 8148, 8150, 8164, 8190, 11880, 13365
Offset: 1

Views

Author

Paolo P. Lava, Jun 26 2015

Keywords

Comments

It appears that a or b is equal to 1. In particular, if b=1 we have 2625, 3705, 13365, 25545, 57645, ... that are a subset of A001274.

Examples

			6 in base 2 is 110. If we take 110 = concat(1,10) then 1 and 10 converted to base 10 are 1 and 2. Finally phi(1 + 2) = 2 = phi(6).
12 in base 2 is 1100. If we take 1100 = concat(1,100) then 1 and 100 converted to base 10 are 1 and 4. Finally phi(1 + 4) = 4 = phi(12);
2625 in base 2 is 101001000001. If we take 101001000001 = concat(10100100000,1) then 10100100000 and 1 converted to base 10 are 1312 and 1. Finally phi(1312 + 1) = 1200 = phi(2625); etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n;
    for n from 1 to q do c:=convert(n,binary,decimal);
    for k from 1 to ilog10(c) do
    a:=convert(trunc(c/10^k),decimal,binary);
    b:=convert((c mod 10^k),decimal,binary);
    if a*b>0 then if phi(a+b)=phi(n) then print(n); break;
    fi; fi; od; od; end: P(10^8);

A280450 Smallest k > 2n+1 such that phi(k) = phi(2n+1).

Original entry on oeis.org

4, 8, 9, 14, 22, 21, 16, 32, 27, 26, 46, 33, 38, 58, 62, 44, 39, 57, 45, 55, 49, 52, 94, 86, 64, 106, 75, 63, 118, 77, 74, 104, 134, 92, 142, 91, 82, 93, 158, 162, 166, 128, 116, 115, 95, 99, 111, 119, 122, 125, 206, 112, 214, 133, 117, 145, 178, 135, 153, 242
Offset: 1

Views

Author

Thomas Ordowski, Jan 03 2017

Keywords

Comments

All terms are composite.

Crossrefs

Programs

  • Maple
    f:= n -> min(select(`>`,numtheory:-invphi(numtheory:-phi(2*n+1)),2*n+1)):
    map(f, [$1..100]); # Robert Israel, Jan 03 2017
  • Mathematica
    Table[k = 2 n + 2; While[EulerPhi@ k != #, k++] &@ EulerPhi[2 n + 1]; k, {n, 120}] (* Michael De Vlieger, Jan 03 2017 *)
  • PARI
    a(n) = my(k=2*n+2); while(eulerphi(k)!=eulerphi(2*n+1), k++); k \\ Felix Fröhlich, Jan 05 2017

Formula

2n+1 < a(n) < 4n+3.
From Robert Israel, Jan 03 2017: (Start)
a(n)=2n+2 if and only if 2n+1 is in A001274.
If n > 3 is in A005384, then a(n)=4n+2. (End)

A290304 Values of uphi(k) = uphi(k+1).

Original entry on oeis.org

1, 12, 24, 120, 96, 180, 432, 744, 720, 864, 840, 1200, 1260, 1680, 2520, 1728, 2784, 2880, 3744, 4032, 5040, 2592, 4224, 5040, 5760, 11520, 11880, 9216, 18000, 20160, 17280, 12480, 17280, 20160, 28080, 20160, 23040, 21600, 32256, 30240, 52080, 34560, 57600
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2017

Keywords

Comments

The values of unitary totient function of numbers such that k and k+1 have the same value.
The unitary version of A003275.

Crossrefs

Programs

  • Mathematica
    uphi[n_] := If[n==1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; a={}; u1=0; For[k=0, k<10^5, k++; u2=uphi[k]; If[u1==u2, a = AppendTo[a, u1]]; u1=u2]; a

Formula

a(n) = A047994(A287055(n)).

A291177 Numbers k such that s(k) = s(k+1) but phi(k) != phi(k+1), where s(k) = phi(k) + phi(phi(k)) + ... + 1 is the sum of iterated phi (A092693).

Original entry on oeis.org

45, 297, 356, 375, 1335, 1935, 3915, 4743, 5271, 6015, 6375, 6903, 20894, 22311, 25347, 28118, 31664, 32384, 39632, 49155, 50954, 55935, 59984, 64514, 70275, 119324, 125054, 162944, 209715, 334304, 342975, 472718, 767584, 798567, 862802, 908775, 1280096
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Comments

The restriction phi(k) != phi(k+1) is intended to exclude all the (trivial) terms of A001274.

Crossrefs

Programs

  • Mathematica
    s[n_]:=Plus @@ FixedPointList[EulerPhi, n] - (n + 1);seqQ[n_]:=(s[n+1]==s[n])&&(EulerPhi[n+1]!=EulerPhi[n]);Select[Range[10^5],seqQ]

A305235 Smallest positive number k such that there are exactly n successive equal values of A001221 starting at k, i.e., such that A305234(k) = n.

Original entry on oeis.org

1, 4, 3, 2, 54, 91, 142, 141, 44360, 48919, 218972, 526097, 526096, 526095, 17233173, 127890362, 29138958036, 118968284929, 118968284928, 585927201065, 585927201064, 585927201063, 585927201062, 313978488186061, 453918847597185, 453918847597184, 455626105596320
Offset: 0

Views

Author

Felix Fröhlich, May 28 2018

Keywords

Comments

a(27) > 2 * 10^15. - Toshitaka Suzuki, Jun 22 2025

Examples

			For n = 5: A001221(91+k) = 2 for k = 0..5 and 91 is the smallest number x with exactly 5 successors that have the same value of A001221 as x, so a(5) = 91.
		

Crossrefs

Programs

  • PARI
    a305234(n) = my(k=n+1, i=0); while(omega(k)==omega(n), i++; k++); i
    a(n) = my(k=1); while(1, if(a305234(k)==n, return(k)); k++)

Extensions

a(16)-a(22) from Toshitaka Suzuki, Apr 01 2025
a(23)-a(26) from Toshitaka Suzuki, Jun 22 2025

A308378 Numbers k such that phi(2k+1) = phi(2k+2).

Original entry on oeis.org

0, 1, 7, 127, 247, 487, 1312, 1627, 1852, 2593, 5857, 6682, 9157, 11467, 12772, 23107, 24607, 24667, 28822, 32767, 82087, 92317, 99157, 107887, 143497, 153697, 159637, 194122, 198742, 207637, 245767, 284407, 294703, 343492, 420127
Offset: 1

Views

Author

Torlach Rush, May 24 2019

Keywords

Comments

For n > 0, 2*a(n) + 1 is a term of A020884. This is because 2*a(n) + 1 is odd and every odd number is the difference of the squares of two consecutive numbers and hence are coprime.
For n > 0, (2*a(n) + 1) * (2*a(n) + 2) is a term of A024364. This is because (2*a(n) + 1) * (2*a(n) + 2) = 2*((a(n) + 1)^2 + (a(n) + 1) * a(n)) and gcd((a(n) + 1), a(n)) = 1.
For n > 0, a(n) is congruent to 1 or 4 mod 6.
2*a(n) + 1 is congruent to 1 or 3 mod 6 and is a term of A047241.
2*a(n) + 2 is congruent to 2 or 4 mod 6 and is a term of A047235.

Examples

			0 is a term because phi(1) = phi(2) = 1.
1 is a term because phi(3) = phi(4) = 2.
7 is a term because phi(15) = phi(16) = 8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 9999], EulerPhi[2# + 1] == EulerPhi[2# + 2] &] (* Alonso del Arte, Jul 05 2019 *)
    Select[(#-1)/2&/@SequencePosition[EulerPhi[Range[900000]],{x_,x_}][[All,1]],IntegerQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    lista(nn) = for(n=0, nn, if(eulerphi(2*n+1) == eulerphi(2*n+2), print1(n, ", ")));
    lista(430000)

Formula

a(n) = (A299535(n) - 2) / 2.

A330251 Numbers k such that phi(k) = phi(k+3), where phi (A000010) is Euler's totient function.

Original entry on oeis.org

3, 5, 8720288051472, 9134280520365, 41544070492925, 42466684755492, 51363581614342, 68616494581632, 113312918293575, 210911076210835, 215517565688425, 294988451482725, 383617980270525, 432759876053505, 442863123838135, 532068058516992, 892813363927485, 923102743748185, 929531173876305
Offset: 1

Views

Author

Michel Marcus and Giovanni Resta, Feb 29 2020

Keywords

Comments

10^15 < a(20) <= 1089641067389872.
Also terms: 1248817919303952, 1332436545865422, 1394926716616125, 1868522795664525, 1950445682260072.
a(4) and a(9) appear in Kevin Ford's paper.

Crossrefs

Programs

  • Mathematica
    Select[Range[100000], EulerPhi[#] == EulerPhi[# + 3] &] (* Alonso del Arte, Mar 01 2020 *)
  • PARI
    isok(k) = eulerphi(k) == eulerphi(k+3); \\ Michel Marcus, Feb 29 2020

A330429 Numbers k such that phi(k) = phi(k+9), where phi (A000010) is Euler's totient function.

Original entry on oeis.org

9, 15, 1005079920836, 13695542245376, 26160864154416, 27402841561095, 27599063056565, 110263115897935, 124632211478775, 127400054266476, 154090744843026, 205849483744896, 231019991767556, 339938754880725, 459718637643265, 632733228632505, 646552697065275, 683008674773416, 884965354448175
Offset: 1

Views

Author

Giovanni Resta, Mar 01 2020

Keywords

Comments

a(20) > 10^15.

Crossrefs

Previous Showing 41-50 of 56 results. Next