cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 71 results. Next

A385366 a(n) = Sum_{permutations p of [n]} des(p^2), where des(p) is the number of descents of p.

Original entry on oeis.org

0, 0, 2, 24, 192, 1560, 13680, 131040, 1370880, 15603840, 192326400, 2554675200, 36404121600, 554204851200, 8979363993600, 154305575424000, 2803653844992000, 53708801642496000, 1082001156268032000, 22869278876860416000, 506043617700741120000, 11699825757321461760000
Offset: 1

Views

Author

Yifan Xie, Jun 26 2025

Keywords

Examples

			For the permutation p = (2, 3, 4, 1), p^2 = (3, 4, 1, 2), and des(p) = des(p^2) = 1 (because 4 > 1).
		

Crossrefs

Cf. A001286.

Programs

  • Mathematica
    A385366[n_] := If[n <= 2, 0, (n - 1)!*(n^2 - n - 4)/2];
    Array[A385366, 25] (* Paolo Xausa, Jul 14 2025 *)
  • PARI
    a(n)=if(n>2,(n-1)!*(n^2-n-4)/2, 0);

Formula

a(n) = 0 if n <= 2; a(n) = (n-1)!*(n^2-n-4)/2 if n >= 3.

A060617 Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=7 and D varies.

Original entry on oeis.org

0, 1, 18, 9600
Offset: 7

Views

Author

Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001

Keywords

Examples

			For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
		

References

  • A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
  • N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
  • Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

Cf. A001286 (case where d=1). Cf. A060595 (number of 3-tilings) for terminology. A diagonal of A060638.

A060618 Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=8 and D varies.

Original entry on oeis.org

0, 1, 20, 22528
Offset: 8

Views

Author

Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001

Keywords

Examples

			For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
		

References

  • A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
  • N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
  • Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

Cf. A001286 (case where d=1). Cf. A060595 (number of 3-tilings) for terminology. A diagonal of A060638.

A104053 Triangle of coefficients in the numerators of rational functions in tanh(1) that express the (2n)th du Bois-Reymond constants as C_0 = 0, C_2 = -4 - 1/(1-tanh(1)), for n>1, C_2n = -3 - (Sum_{k=0..n} a(n,k)*tanh(1)^k) / (2^n*n! * (1-tanh(1))^n).

Original entry on oeis.org

0, 1, 0, 1, -1, -1, -1, 0, 0, 3, 1, -5, 18, -13, -7, -11, 70, -135, 65, -10, 45, 111, -609, 1215, -1350, 1275, -621, -141, -1009, 6188, -16758, 27335, -26845, 12474, -2548, 1883, 10977, -81353, 270004, -511791, 584710, -420287, 216468, -70169, -3599, -146691, 1248210, -4715217, 10303461, -14439411
Offset: 0

Views

Author

Gerald McGarvey, Mar 02 2005

Keywords

Comments

For n>0 the row sums = (-1)^(n-1) * (n-1)! For n odd, the sum of the absolute values of the coefficients in the n-th row = (2*(n-1))!/n! (every other entry of A001761).
The sum of the (2n)th du Bois-Reymond constants = 1/5 or is very close to 1/5.
For the 6th and 9th rows, the coefficients were adjusted from results of the residue evaluations so that double factorials ((2n)!! = 2^n*n! (A000165)) are in the denominators. For the 6th row they were multiplied by 3, for the 9th row they were multiplied by 9.
For n>1, Sum_{k=0..n} (n-k+1)*a(n,k) = (-1)^(n)*A001286(n-1) [A001286 are Lah numbers: (n-1)*n!/2].

Crossrefs

Programs

  • Mathematica
    Table[2 Residue[x^2/((1+x^2)^n (Tan[x]-x)), {x, I}], {n, 0, 9}]

Formula

For n>1, C_2n = -3 - 2 * Residue_{x=i} (x^2/((1+x^2)^n * (tan(x) - x))) (see MathWorld article).
For n>1, Sum_{k=0..n} (-1)^(n+k)*a(n, k) = (2*(n-1))!/n! (i.e., A001761(n-1)).

Extensions

Added the keyword tabl Gerald McGarvey, Aug 20 2009

A105187 a(n) = determinant of the n X n matrix m(i,j) = (i+j+2)!/i!/j!.

Original entry on oeis.org

1, 24, 720, 28800, 1512000, 101606400, 8534937600, 877879296000, 108637562880000, 15933509222400000, 2734190182563840000, 542861032610856960000, 123500884918969958400000, 31920228717518389248000000, 9302466654819644866560000000, 3036325116133132084445184000000
Offset: 0

Views

Author

Benoit Cloitre, Apr 11 2005

Keywords

Crossrefs

Cf. A001286.

Programs

  • PARI
    a(n)=(1/12)*(n+1)*(n+2)!*(n+3)!

Formula

a(n) = (1/12)*(n+1)*(n+2)!*(n+3)!.

A105188 a(n) = determinant of the n X n matrix m(i,j)=(i+j+3)!/i!/j!.

Original entry on oeis.org

1, 120, 21600, 6048000, 2540160000, 1536288768000, 1290482565120000, 1460088845107200000, 2168231934984192000000, 4134095556036526080000000, 9931751163822150254592000000, 29578560738801240212766720000000
Offset: 0

Views

Author

Benoit Cloitre, Apr 11 2005

Keywords

Crossrefs

Cf. A001286.

Programs

  • PARI
    a(n)=(1/288)*(n+1)*(n+2)!*(n+3)!*(n+4)!

Formula

a(n)=(1/288)*(n+1)*(n+2)!*(n+3)!*(n+4)!

A141052 Number of runs or rising sequences of length 2 among all permutations of n.

Original entry on oeis.org

1, 4, 21, 130, 930, 7560, 68880, 695520, 7711200, 93139200, 1217462400, 17124307200, 257902444800, 4140968832000, 70614415872000, 1274546617344000, 24275666967552000, 486580401635328000, 10238462617743360000, 225651661258383360000, 5198503365971435520000
Offset: 2

Views

Author

Harlan J. Brothers, Jul 31 2008, Aug 24 2008

Keywords

Examples

			a[3]=4 because of the 6 permutations of n=3, there are 4 ascending runs of length 2:
{1,3} in {1,3,2}
{1,3} in {2,1,3}
{2,3} in {2,3,1}
{1,2} in {3,1,2}
a[3]=4 because of the 6 permutations of n=3, there are 4 rising sequences of length 2:
{1,2} in {1,3,2}
{2,3} in {2,1,3}
{2,3} in {2,3,1}
{1,2} in {3,1,2}
		

Crossrefs

Programs

  • Mathematica
    Table[n!(5n + 1)/4! + Floor[2/n](1/12), {n, 2, 10}]

Formula

a(n) = n!*(5n+1)/4! + floor(2/n)*(1/12), n>=2.
Recurrence: a(n) = (n+1)*a(n-1)+(n-1)!/6, n>=2, with a(2)=1 and a(3)=4.
E.g.f.: x^2*(x-2)*(x-6)/(24*(x-1)^2).

Extensions

First example and typo in second example corrected by Harlan J. Brothers, Apr 29 2013

A181416 Irregular table T(n,k) = n*A178883(n,k) read by rows.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 24, 32, 16, 72, 96, 120, 120, 120, 180, 180, 480, 600, 720, 576, 576, 288, 648, 1296, 216, 1152, 1728, 3600, 4320, 5040, 3360, 3360, 3360, 3024, 6048, 3024, 3024, 4032, 12096, 4032, 8400, 16800, 30240, 35280, 40320
Offset: 1

Views

Author

Alford Arnold, Oct 17 2010

Keywords

Comments

The row sum of row n is A001286(n).

Examples

			In row n=3 the products are (3,3,3) times (2,4,6) yielding (6,12,18) which adds to 36, the third Lah number.
The table starts in row n=1 with row lengths A000041(n) as:
1;
2,4;
6,12,18;
24,32,16,72,96;
120,120,120,180,180,480,600;
		

Crossrefs

Cf. A051683.

Formula

T(n,k) = A036042(n,k)*A178883(n,k), 1<=k<= A000041(n).

A281485 Triangular array T(n,k) = k Sum_{j=0..k-1} (-1)^j binomial(k-1,j) (n-1-j)^(n-1), 1<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 2, 4, 6, 6, 27, 38, 36, 24, 256, 350, 330, 240, 120, 3125, 4202, 3960, 3000, 1800, 720, 46656, 62062, 58506, 45360, 29400, 15120, 5040, 823543, 1087214, 1025388, 806904, 546000, 312480, 141120, 40320, 16777216, 22024830, 20781690, 16524144, 11493720, 6985440, 3598560, 1451520, 362880
Offset: 1

Views

Author

Rui Duarte, Jan 22 2017

Keywords

Comments

A parking function of size n is a sequence (a_1,...,a_n) of positive integers such that, if b_1 <= b_2 <= ... <= b_n is the increasing rearrangement of the sequence (a_1,..,a_n), then b_i <= i.
Given a:[n]->[n], the center of a is the largest subset Z(a) = { z_1, ..., z_k } of [n] such that z_1 < z_2 < ... < z_k and a_(z_j) <= j, for every j in [k]. The length of the center of a is |Z(a)|.
Then T(n,k)= number of parking functions of size n with center of length k.

Examples

			First seven rows:
      1
      1      2
      4      6      6
     27     38     36     24
    256    350    330    240    120
   3125   4202   3960   3000   1800    720
  46656  62062  58506  45360  29400  15120   5040
		

Crossrefs

T(n,k) = k * A174551(n-1,k-1).
T(n,1) = (n-1)^(n-1) = A000312(n-1).
T(n,n-1) = n!(n-1)/2 = A001286(n), n>=2.
T(n,n) = n! = A000142(n).
Sum_{i=1,...,n} T(n,i) = (n+1)^(n-1) = A000272(n+1).

Programs

  • Mathematica
    Table[Which[n == k == 1, 1, k == 1, (n - 1)^(n - 1), k == n, n!, True, k Sum[(-1)^j*Binomial[k - 1, j] (n - 1 - j)^(n - 1), {j, 0, k - 1}]], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jan 23 2017 *)

Formula

T(n,k) = k*Sum_{j=0..k-1} (-1)^j*binomial(k-1,j)*(n-1-j)^(n-1).
T(n,k) = k!*Sum_{j_1+j_2+...+j_k=n-k} (n-1)^(j_1)*(n-2)^(j_2)*...*(n-k)^(j_k).

A305739 a(n) = n!*T(n) - 1, where T(n) is the n-th triangular number.

Original entry on oeis.org

0, 5, 35, 239, 1799, 15119, 141119, 1451519, 16329599, 199583999, 2634508799, 37362124799, 566658892799, 9153720575999, 156920924159999, 2845499424767999, 54420176498687999, 1094805903679487999, 23112569077678079999, 510909421717094399999
Offset: 1

Views

Author

Maheswara Rao Valluri, Jun 22 2018

Keywords

Crossrefs

See A305738 for the indices of primes in this sequence.

Programs

  • Maple
    seq(n*(n+1)!/2-1,n=1..21);
  • PARI
    a(n) = n*(n+1)!/2 - 1; \\ Michel Marcus, Jun 23 2018

Formula

a(n) = n*(n+1)!/2 - 1. - Michel Marcus, Jun 23 2018
a(n) = A180119(n)-1 = A001286(n+1)-1. - Alois P. Heinz, Jun 24 2018
Previous Showing 61-70 of 71 results. Next