cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A062136 Twelfth column of Losanitsch's triangle A034851 (formatted as lower triangular matrix).

Original entry on oeis.org

1, 6, 42, 182, 693, 2184, 6216, 15912, 37854, 83980, 176484, 352716, 676270, 1248072, 2229096, 3863080, 6519591, 10737090, 17299646, 27313650, 42337659, 64512240, 96770544, 143048880, 208616044, 300402648, 427500360, 601661144, 838033836, 1155900720, 1579738736
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Also seventh column (m=6) of triangle A062135.
Number of homeomorphically irreducible (or series-reduced) trees (no vertices of degree 2) with n+9 leaves which become tree P(7) (path on 7 nodes (vertices) or 6 edges (links) when all leaves are omitted. A leave is an edge together with a node of degree 1 at one end). Proof by Polya enumeration. See illustration for A034851.

Crossrefs

Cf. A018213.

Programs

  • Magma
    [(1/(2*Factorial(11)))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n): n in [0..30]]; // G. C. Greubel, Nov 24 2017
  • Mathematica
    Table[(1/(2*11!))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n), {n, 0, 50}] (* G. C. Greubel, Nov 24 2017 *)
  • PARI
    for(n=0,50, print1((1/(2*11!))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n), ", ")) \\ G. C. Greubel, Nov 24 2017
    

Formula

G.f.: Pe(6, x^2)/((1-x)^(2*6)*(1+x)^6), with Pe(6, x^2) := Sum_{m=0..3} A034839(6, m)*x^(2*m) = 1+15*x^2+15*x^4+x^6.
a(n) = A034851(n+11,11).
a(2n+1) = A001288(2n+12)/2; a(2n) = (A001288(2n+11)+A000389(n+5))/2. - Gary W. Adamson, Dec 15 2010
a(n) = (1/(2*11!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)*(n+10)*(n+11) + (1/15)*(1/2^9)*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*(1/2)*(1+(-1)^n). - Yosu Yurramendi, Jun 24 2013

A017764 a(n) = binomial coefficient C(n,100).

Original entry on oeis.org

1, 101, 5151, 176851, 4598126, 96560646, 1705904746, 26075972546, 352025629371, 4263421511271, 46897636623981, 473239787751081, 4416904685676756, 38393094575497956, 312629484400483356, 2396826047070372396, 17376988841260199871, 119594570260437846171
Offset: 100

Views

Author

Keywords

Comments

More generally, the ordinary generating function for the binomial coefficients C(n,k) is x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Mar 21 2016

Crossrefs

Cf. similar sequences of the binomial coefficients C(n,k): A000012 (k = 0), A001477 (k = 1), A000217 (k = 2), A000292 (k = 3), A000332 (k = 4), A000389 (k = 5), A000579-A000582 (k = 6..9) A001287 (k = 10), A001288 (k = 11), A010965-A011001 (k = 12..48), A017713-A017763 (k = 49..99), this sequence (k = 100).

Programs

Formula

G.f.: x^100/(1 - x)^101. - Ilya Gutkovskiy, Mar 21 2016
E.g.f.: x^100 * exp(x)/(100)!. - G. C. Greubel, Nov 24 2017
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=100} 1/a(n) = 100/99.
Sum_{n>=100} (-1)^n/a(n) = A001787(100)*log(2) - A242091(100)/99! = 63382530011411470074835160268800*log(2) - 1914409165727592211172313915606932788039791776845041612575266508424929 / 43575234518570298227833630584570189723 = 0.9902877001... (End)

A095704 Triangle read by rows giving coefficients of the trigonometric expansion of sin(n*x).

Original entry on oeis.org

1, 2, 0, 3, 0, -1, 4, 0, -4, 0, 5, 0, -10, 0, 1, 6, 0, -20, 0, 6, 0, 7, 0, -35, 0, 21, 0, -1, 8, 0, -56, 0, 56, 0, -8, 0, 9, 0, -84, 0, 126, 0, -36, 0, 1, 10, 0, -120, 0, 252, 0, -120, 0, 10, 0, 11, 0, -165, 0, 462, 0, -330, 0, 55, 0, -1, 12, 0, -220, 0, 792, 0, -792, 0, 220, 0, -12, 0, 13, 0, -286, 0, 1287, 0
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2004

Keywords

Examples

			The trigonometric expansion of sin(4x) is 4*cos(x)^3*sin(x) - 4*cos(x)*sin(x)^3, so the fourth row is 4, 0, -4, 0.
Triangle begins:
1
2 0
3 0 -1
4 0 -4 0
5 0 -10 0 1
6 0 -20 0 6 0
7 0 -35 0 21 0 -1
8 0 -56 0 56 0 -8 0
		

Crossrefs

First column is A000027 = C(n, 1), third column is A000292 = C(n, 3), fifth column is A000389 = C(n, 5), seventh column is A000580 = C(n, 7), ninth column is A000582 = C(n, 9).
A001288 = C(n, 11), A010966 = C(n, 13), A010968 = C(n, 15), A010970 = C(n, 17), A010972 = C(n, 19),
A010974 = C(n, 21), A010976 = C(n, 23), A010978 = C(n, 25), A010980 = C(n, 27), A010982 = C(n, 29),
A010984 = C(n, 31), A010986 = C(n, 33), A010988 = C(n, 35), A010990 = C(n, 37), A010992 = C(n, 39),
A010994 = C(n, 41), A010996 = C(n, 43), A010998 = C(n, 45), A011000 = C(n, 47), A017713 = C(n, 49)
Another version of the triangle in A034867. Cf. A096754.
A017715 = C(n, 51), A017717 = C(n, 53), A017719 = C(n, 55), A017721 = C(n, 57), etc.

Programs

  • Mathematica
    Flatten[ Table[ Plus @@ CoefficientList[ TrigExpand[ Sin[n*x]], {Sin[x], Cos[x]}], {n, 13}]]

Formula

T(n,k) = C(n+1,k+1)*sin(Pi*(k+1)/2). - Paul Barry, May 21 2006

A206294 Riordan array (1, x/(1-x)^3).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 10, 21, 9, 1, 0, 15, 56, 45, 12, 1, 0, 21, 126, 165, 78, 15, 1, 0, 28, 252, 495, 364, 120, 18, 1, 0, 36, 462, 1287, 1365, 680, 171, 21, 1, 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 05 2012

Keywords

Comments

The convolution triangle of the triangular numbers A000217. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 10, 21, 9, 1
0, 15, 56, 45, 12, 1
0, 21, 126, 165, 78, 15, 1
0, 28, 252, 495, 364, 120, 18, 1
0, 36, 462, 1287, 1365, 680, 171, 21, 1
0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
		

Crossrefs

Cf. Columns: A000007, A000217 (triangular numbers), A000389, A000581, A001288, A010967..(+3)..A011000, A017714..(+3)..A017762.
Row sums are A052529.
Cf. A127893.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
  • Mathematica
    Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    {T(n,k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k),n-k)}
    
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)),n,x),k,y)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

Triangle T(n,k), read by rows, given by (0, 3, -1, 2/3, -1/6, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
T(n,0) = 0^n, T(n,k) = C(n-1+2k, n-k) for k > 0.
T(n,n) = 1, T(k+1,k) = 3*k = A008585(k), T(k+2,k) = A081266(k).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A052529(n), A052910(n) for x = 0, 1, 2 respectively.
G.f.: (1-x)^3/((1-x)^3-y*x).
Previous Showing 11-14 of 14 results.