A368830
Number of square unlabeled endofunctions from n points to themselves.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 47, 105
Offset: 0
The a(3) = 4 square endofunctions are:
1->1, 2->2, 3->3
1->1, 2->1, 3->1 (equivalent to any constant function)
1->1, 2->2, 3->1 (equivalent to any function consisting of 2 1-cycles)
1->2, 2->3, 3->1 (equivalent to any 3-cycle)
Each function listed here is its own square root, except for the 3-cycle, whose square root is its inverse.
A002823
Number of period-n solutions to a certain "universal" equation related to transformations on the unit interval.
Original entry on oeis.org
1, 1, 3, 4, 9, 14, 27, 48, 93, 163, 315, 576, 1085
Offset: 3
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. Metropolis, M. L. Stein and P. R. Stein, On finite limit sets for transformations on the unit interval, J. Combin. Theory, A 15 (1973), 25-44; reprinted in P. Cvitanovic, ed., Universality in Chaos, Hilger, Bristol, 1986, pp. 187-206.
- P. R. Stein, Letter to N. J. A. Sloane, Jun 02 1971
A027853
Functions on n points with a single labeled point.
Original entry on oeis.org
0, 1, 4, 15, 52, 175, 571, 1838, 5834, 18363, 57372, 178271, 551344, 1698782, 5217266, 15979465, 48825416, 148877730, 453124341, 1376890744, 4177819301, 12659943750, 38317731349, 115851225052, 349924919167
Offset: 0
Original entry on oeis.org
1, 3, 12, 41, 140, 457, 1485, 4732, 14986, 47025, 146784, 455683, 1409122, 4341456, 13336440, 40858875, 124894889, 380993722, 1160145321, 3527008680, 10707133507, 32461710583, 98300107420, 297348593017, 898559807247, 2712889137261, 8183743165156, 24668014337837
Offset: 0
A127136
Triangle read by rows: T(n,k) is the number of endofunctions on n objects with k components.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 9, 7, 2, 1, 20, 17, 7, 2, 1, 51, 48, 21, 7, 2, 1, 125, 127, 60, 21, 7, 2, 1, 329, 352, 174, 65, 21, 7, 2, 1, 862, 963, 504, 190, 65, 21, 7, 2, 1, 2311, 2689, 1456, 570, 196, 65, 21, 7, 2, 1, 6217, 7496, 4212, 1684, 590, 196, 65, 21, 7, 2, 1
Offset: 1
For n = 3, the 7 endofunctions are (1,2,3) -> (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,3), (1,3,2) and (2,3,1). The components are respectively 123, 123, 13|2, 123, 1|2|3, 1|23 and 123; the number of components is thus 1, 1, 2, 1, 2, 3, 2, 1, so row 3 is 4,2,1.
The triangle starts:
1;
2, 1;
4, 2, 1;
9, 7, 2, 1;
20, 17, 7, 2, 1;
-
Needs["Combinatorica`"];
nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[1/(1-y x^i)^c[[i]],{i,1,nn-1}],{x,0,10}],{x,y}]//Grid (* Geoffrey Critzer, Oct 13 2012, after code given by Robert A. Russell in A000081 *)
A217897
Triangular array read by rows. T(n,k) is the number of unlabeled functions on n nodes that have exactly k fixed points, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 6, 7, 4, 1, 1, 13, 19, 9, 4, 1, 1, 40, 47, 27, 10, 4, 1, 1, 100, 130, 68, 29, 10, 4, 1, 1, 291, 343, 195, 76, 30, 10, 4, 1, 1, 797, 951, 523, 220, 78, 30, 10, 4, 1, 1, 2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1, 6389, 7318, 4096, 1708, 625, 230, 79, 30, 10, 4, 1, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 1, 1;
2, 3, 1, 1;
6, 7, 4, 1, 1;
13, 19, 9, 4, 1, 1;
40, 47, 27, 10, 4, 1, 1;
100, 130, 68, 29, 10, 4, 1, 1;
291, 343, 195, 76, 30, 10, 4, 1, 1;
797, 951, 523, 220, 78, 30, 10, 4, 1, 1;
2273, 2615, 1477, 600, 228, 79, 30, 10, 4, 1, 1;
-
Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cfd=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1]; CoefficientList[Series[Product[1/(1-x^i)^cfd[[i]]/(1-y x^i)^rt[[i]],{i,1,nn-1}],{x,0,10}],{x,y}]//Grid (* after code given by Robert A. Russell in A000081 *)
A244519
Expansion of Product_{n>=1} (1 + H(x^n)) where H(x) is the g.f. of A000081.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 35, 76, 175, 414, 1009, 2510, 6382, 16448, 42961, 113352, 301715, 808932, 2182739, 5921803, 16143975, 44199809, 121477237, 335015538, 926814691, 2571322157, 7152404733, 19942874638, 55729271645, 156051344975, 437801148097, 1230423785329, 3463777894236, 9766002585763, 27574869734583, 77965430442158
Offset: 0
Cf.
A001372 (expansion of 1/Product_{n>=1} (1 - H(x^n))).
-
N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
T=prod(n=1,N, 1 + H(x^n));
Vec(T)
A368943
Number of unlabeled mappings from n points to themselves with unique square root (endofunctions).
Original entry on oeis.org
1, 1, 1, 1, 3, 7, 11, 23, 50
Offset: 0
For n = 4, representatives of the a(4) = 3 mappings up to relabeling are
1->1 2->1 3->2 4->1
1->2 2->3 3->1 4->1
1->2 2->3 3->1 4->4
whose unique square roots are respectively
1->1 2->1 3->4 4->2
1->3 2->1 3->2 4->2
1->3 2->1 3->2 4->4
A381123
Number of unlabeled endofunctions on n points whose self-referencing elements are mapped from another element.
Original entry on oeis.org
1, 0, 2, 4, 12, 28, 83, 213, 608, 1664, 4703, 13173, 37412, 105995, 302301, 862794, 2470631, 7084425, 20357121, 58573788, 168789684, 486964114, 1406549550, 4066751083, 11769363663, 34090076148, 98820914068, 286672673725, 832183340955, 2417270306657, 7025657374736, 20430883575932, 59444386613999, 173039084438093
Offset: 0
For n = 2 one node must reference the other one, this one may reference itself or the first one. So a(2) = 2.
For n = 3 there are 7 = A001372(3) endofunctions, but 3 = A001372(2) of them have at least 1 isolated element. So a(3) = 7 - 3 = 4.
A032176
Functions of n points with no symmetries.
Original entry on oeis.org
1, 1, 3, 6, 15, 34, 82, 193, 464, 1111, 2683, 6482, 15730, 38232, 93177, 227458, 556323, 1362639, 3342504, 8209130, 20185204, 49684404, 122413446, 301870406, 745019874, 1840103575, 4548008306, 11248190948
Offset: 1
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 328. (4.4.31).
Comments