cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A127911 Number of nonisomorphic partial functional graphs with n points which are not functional graphs.

Original entry on oeis.org

0, 1, 3, 9, 26, 74, 208, 586, 1647, 4646, 13135, 37247, 105896, 301880, 862498, 2469480, 7083690, 20353886, 58571805, 168780848, 486958481, 1406524978, 4066735979, 11769294050, 34090034328, 98820719105, 286672555274
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Comments

Partial functional graphs (digraphs) with at least one node of outdegree = 0.

Examples

			a(0) = 0 because the null graph is trivially both partial functional and functional.
a(1) = 1 because there are two partial functional graphs on one point: the point with, or without, a loop; the point with loop is the identity function, but without a loop the naked point is the unique merely partial functional case.
a(2) = 3 because there are A126285(2) enumerates the 6 partial functional graphs on 2 points, of which 3 are functional, 6 - 3 = 3.
a(3) = A126285(3) - A001372(3) = 16 - 7 = 9.
a(4) = 45 - 19 = 26.
a(5) = 121 - 47 = 74.
a(6) = 338 - 130 = 208.
a(7) = 929 - 343 = 586.
a(8) = 2598 - 951 = 1647.
a(9) = 7261 - 2615 = 4646.
a(10) = 20453 - 7318 = 13135.
		

References

  • S. Skiena, "Functional Graphs." Section 4.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 164-165, 1990.

Crossrefs

Formula

a(n) = A126285(n) - A001372(n).
Euler transform of (A002861 + A000081) - Euler transform of A002861.

A127912 Number of nonisomorphic disconnected mappings (or mapping patterns) from n points to themselves; number of disconnected endofunctions.

Original entry on oeis.org

0, 1, 3, 10, 27, 79, 218, 622, 1753, 5007, 14274, 40954, 117548, 338485, 975721, 2817871, 8146510, 23581381, 68322672, 198138512, 575058726, 1670250623, 4854444560, 14117859226, 41081418963, 119606139728
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Comments

Number of endofunctions on n points whose functional digraphs (with loops allowed) are nontrivially the directed sum of two or more digraphs of endofunctions.

Examples

			a(0) = 0, as the null digraph is formally neither connected nor disconnected.
a(1) = 0, as the unique endofunction on one point is the identity function on one value and is connected.
a(2) = 1, as there are 3 endofunctions on two points, two of which are "prime endofunctions" and one of which is the direct sum of two copies of the unique endofunction on one point, namely two points-with-loops, or the identity function on two values; 3 - 2 = 1.
a(3) = A001372(3) - A002861(3) = 7 - 4 = 3.
a(4) = A001372(4) - A002861(4) = 19 - 9 = 10.
a(5) = A001372(5) - A002861(5) = 47 - 20 = 27.
a(6) = 130 - 51 = 79.
a(7) = 343 - 125 = 218.
a(8) = 951 - 329 = 622.
a(9) = 2615 - 862 = 1753.
a(10) = 7318 - 2311 = 5007.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
  • R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399 and 41.401.

Crossrefs

Formula

a(n) = A001372(n) - A002861(n).

A173761 Partial sums of A002861.

Original entry on oeis.org

1, 3, 7, 16, 36, 87, 212, 541, 1403, 3714, 9931, 26880, 73230, 200944, 554216, 1535969, 4273508, 11933297, 33425583, 93891713, 264401743, 746269426, 2110694255, 5981068081, 16977958318, 48271041858
Offset: 1

Views

Author

Jonathan Vos Post, Feb 23 2010

Keywords

Comments

Partial sums of number of connected functions (or mapping patterns) on n unlabeled points, or number of rings and branches with n edges. The subsequence of primes in this partial sum begins: 3, 7, 9931, 1535969, 5981068081.

Examples

			a(26) = 1 + 2 + 4 + 9 + 20 + 51 + 125 + 329 + 862 + 2311 + 6217 + 16949 + 46350 + 127714 + 353272 + 981753 + 2737539 + 7659789 + 21492286 + 60466130 + 170510030 + 481867683 + 1364424829 + 3870373826 + 10996890237 + 31293083540.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A002861(i).

A217859 Triangular array read by rows. T(n,k) is the number of functions on n unlabeled nodes that have exactly k unique components (n >= 1, k >= 1).

Original entry on oeis.org

1, 3, 5, 2, 12, 7, 21, 25, 1, 58, 63, 9, 126, 178, 39, 341, 466, 140, 4, 867, 1253, 470, 25, 2334, 3418, 1431, 135, 6218, 9365, 4358, 544, 6, 17016, 25924, 12871, 2042, 50, 46351, 72207, 37993, 7056, 291, 127842, 202345, 111142, 23483, 1383, 4, 353297, 568822, 325359, 75701, 5754, 60
Offset: 1

Views

Author

Geoffrey Critzer, Oct 13 2012

Keywords

Comments

Row sums are A001372.
T(n,1) = A002861(n) + 1 when n is prime (counts connected functions and the identity function).

Examples

			Triangle begins:
       1;
       3,
       5,      2;
      12,      7;
      21,     25,      1;
      58,     63,      9;
     126,    178,     39;
     341,    466,    140,     4;
     867,   1253,    470,    25;
    2334,   3418,   1431,   135;
    6218,   9365,   4358,   544,    6;
   17016,  25924,  12871,  2042,   50;
   46351,  72207,  37993,  7056,  291;
  127842, 202345, 111142, 23483, 1383,  4;
  353297, 568822, 325359, 75701, 5754, 60;
T(3,2)=2 because (in the link) the third and the fifth digraphs on 3 nodes are composed of 2 unique components.
		

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];c=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];CoefficientList[Series[Product[((y x^i +1-x^i)/(1-x^i))^c[[i]],{i,1,nn-1}],{x,0,15}],{x,y}]//Grid
    (* after code given by Robert A. Russell in A000081 *)

Formula

O.g.f.: Product_{n>=1} ((y*x^n - x^n + 1)/(1 - x^n))^A002861(n).

A217896 Number of unlabeled functions on n nodes that have at least one fixed point.

Original entry on oeis.org

0, 1, 2, 5, 13, 34, 90, 243, 660, 1818, 5045, 14102, 39639, 111982, 317533, 903464, 2577724, 7372542, 21130127, 60672017, 174492633, 502568607, 1449360241, 4184719174, 12095325486, 34993693260, 101332159421, 293669741860, 851722291650, 2471948910379, 6824540110584
Offset: 0

Views

Author

Geoffrey Critzer, Oct 14 2012

Keywords

Comments

Crossrefs

Cf. A001372 and A001373.

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cfd=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,2,30}]],1];cf=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,1,30}]],1];fd=CoefficientList[Series[Product[1/(1-x^i)^cfd[[i]],{i,1,nn-1}],{x,0,nn}],x];f=CoefficientList[Series[Product[1/(1-x^i)^cf[[i]],{i,1,nn-1}],{x,0,nn}],x];f-fd (* Geoffrey Critzer, Oct 14 2012, after code given by Robert A. Russell in A000081 *)

A217898 Number of fixed points over all unlabeled functions on n nodes.

Original entry on oeis.org

0, 1, 3, 8, 22, 58, 158, 426, 1170, 3224, 8977, 25105, 70680, 199739, 566842, 1613454, 4605788, 13177776, 37782903, 108522417, 312207970, 899460505, 2594638480, 7493254511, 21663019843, 62687523055, 181561095507, 526275453283, 1526600618192, 4431347014046, 12516888508178
Offset: 0

Views

Author

Geoffrey Critzer, Oct 14 2012

Keywords

Programs

  • Mathematica
    Needs["Combinatorica`"]; nn=30; s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2 k,0,s[n-k,k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i] s[n-1,i] i,{i,1,n-1}]/(n-1); rt=Table[a[i],{i,1,nn}]; cfd=Drop[Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i),{i,1,nn}], {k,1,nn}][[j]], {j,1,nn}],x],nn],{n,2,30}]],1]; CoefficientList[Series[D[Product[1/(1-x^i)^cfd[[i]]/(1-y x^i)^rt[[i]], {i,1,nn-1}],y]/.y->1,{x,0,nn}],x] (* after code given by Robert A. Russell in A000081 *)

Formula

a(n) = Sum_{k=1..n} A217897(n,k)*k.

A225772 Number of 2-element sets of mapping patterns from n points to themselves; the number of 2-element sets of transformations on n points up to conjugation.

Original entry on oeis.org

0, 4, 67, 1455, 41829, 1540566, 68342769, 3540690574, 209612913688, 13957423185476, 1032436318249157, 83993175608836193, 7453446303042081363, 716451740543945322472, 74159075140708643215135
Offset: 1

Views

Author

James Mitchell, Jul 26 2013

Keywords

Crossrefs

Formula

a(n) = A054745(n) - A001372(n). [James Mitchell, Oct 29 2013]

Extensions

Added more terms, James Mitchell, Oct 29 2013

A350571 Triangular array read by rows. T(n,k) is the number of unlabeled partial functions on [n] with exactly k undefined points, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 6, 2, 1, 19, 16, 7, 2, 1, 47, 45, 19, 7, 2, 1, 130, 121, 57, 20, 7, 2, 1, 343, 338, 158, 60, 20, 7, 2, 1, 951, 929, 457, 170, 61, 20, 7, 2, 1, 2615, 2598, 1286, 498, 173, 61, 20, 7, 2, 1, 7318, 7261, 3678, 1421, 510, 174, 61, 20, 7, 2, 1
Offset: 0

Views

Author

Geoffrey Critzer, Jan 06 2022

Keywords

Comments

It appears that the columns converge to A116950.

Examples

			Triangle T(n,k) begins:
    1;
    1,   1;
    3,   2,   1;
    7,   6,   2,   1;
   19,  16,   7,   2,  1;
   47,  45,  19,   7,  2,  1;
  130, 121,  57,  20,  7,  2, 1;
  343, 338, 158,  60, 20,  7, 2, 1;
  951, 929, 457, 170, 61, 20, 7, 2, 1;
  ...
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, Springer, 2009.

Crossrefs

Cf. A126285 (row sums), A001372 (column k=0), A000081, A002861.
Cf. A116950.

Programs

  • Mathematica
    nn = 10; A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt",
        "Table"], {, }][[;; nn, 2]];
    A000081 = Drop[Cases[ Import["https://oeis.org/A000081/b000081.txt",
         "Table"], {, }][[;; nn + 1, 2]], 1];
    Map[Select[#, # > 0 &] &, CoefficientList[Series[ Product[1/(1 -  y x^i)^A000081[[i]], {i, 1, nn}] Product[1/(1 - x^i)^A002861[[i]], {i, 1, nn}], {x, 0, nn}], {x,y}]] // Grid

Formula

G.f.: Product_{i>=1} 1/(1-y*x^i)^A000081(i)*Product_{i>=1} 1/(1-x^i)^A002861(i).

A368858 Number of perfect cube unlabeled endofunctions from n points to themselves.

Original entry on oeis.org

1, 1, 3, 5, 12, 22, 49, 99
Offset: 0

Views

Author

Keith J. Bauer, Jan 08 2024

Keywords

Comments

The same as A368830 but perfect cubes instead of perfect squares.

Crossrefs

Cf. A001372, A163859 (labeled version).
Previous Showing 31-39 of 39 results.