cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 434 results. Next

A153585 Convolution triangle, A053121 * (A001405 * 0^(n-k)).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 0, 3, 2, 0, 6, 0, 6, 0, 5, 0, 12, 0, 10, 5, 0, 18, 0, 30, 0, 20, 0, 14, 0, 42, 0, 60, 0, 35, 14, 0, 56, 0, 120, 0, 140, 0, 70, 0, 42, 0, 144, 0, 270, 0, 280, 0, 126
Offset: 0

Views

Author

Gary W. Adamson, Dec 28 2008

Keywords

Comments

Row sums = A145974: (1, 1, 3, 5, 14, 27, 73,...).

Examples

			First few rows of the triangle =
1;
0, 1;
1, 0, 2;
0, 2, 0, 3;
2, 0, 6, 0, 6;
0, 5, 0, 12, 0, 10;
5, 0, 18, 0, 30, 0, 20;
0, 14, 0, 42, 0, 60, 0, 35;
14, 0, 56, 0, 120, 0, 140, 0, 70;
0, 42, 0, 144, 0, 270, 0, 280, 0, 126;
42, 0, 180, 0, 450, 0, 700, 0, 630, 0, 252;
...
Example: Row 4 = (2, 0, 6, 0, 6) = termwise products of (2, 0, 3, 0, 1) and (1, 1, 2, 3, 6).
		

Formula

Convolution triangle, A053121 * (A001405 * 0^(n-k)).
A053121 = the aerated Catalan triangle and (A001405 * 0^(n-k) = an
infinite lower triangular matrix with A001405 as the main diagonal and
the rest zeros.

A048627 Numbers m such that the maximal value of A001222(binomial(m,k)) and the central value A001222(A001405(m)) are identical.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 22, 23, 26, 27, 28, 29, 30, 39, 45, 46, 47, 51, 58, 59, 61, 62, 63, 86, 87, 93, 94, 95, 118, 119, 122, 123, 124, 125, 126, 147, 148, 158, 159, 178, 179, 187, 188, 189, 190, 214, 215, 221, 222, 236, 237, 238, 245, 246, 247, 248, 249, 253, 254
Offset: 1

Views

Author

Keywords

Comments

Indexes of 0's in A048622. - Sean A. Irvine, Jun 24 2021

Examples

			For m=23, A001222 for binomial(23,k) = {0,1,2,3,4,4,5,5,6,6,6,6,6,6,6,6,5,5,4,4,3,2,1,0}, thus both the maximal and central values are 6, so 23 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[120], Function[n, ar = PrimeOmega[#] & /@ Binomial[n, Range[0, n/2]]; Max[ar] == ar[[-1]]]] (* Ivan Neretin, Sep 07 2015 *)
  • PARI
    isok(m) = vecmax(apply(bigomega, vector(m+1, k, binomial(m,k-1)))) == bigomega(binomial(m, m\2)); \\ Michel Marcus, Jun 25 2021

A056201 Characteristic cube divisor (A056191) of central binomial coefficient (A001405).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 8, 27, 216, 8, 1, 1, 1, 27, 27, 1, 1, 1, 8, 1, 1, 1, 8, 1, 8, 216, 27, 1, 1, 1, 8, 27, 216, 8, 1, 1, 8, 8, 1, 8, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 8, 1, 8, 8, 1, 1, 1, 1, 8, 27, 216, 216, 27, 1, 8, 8, 1, 8, 1, 27, 216
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Examples

			n=14, binomial(14,8) = 3432 = 2*2*2*3*11*13 so g(3432)=2, thus a(14)=8.
		

Crossrefs

Equals A056059^3.

Formula

a(n) = A056059(n)^3 = g^3 and binomial(n, floor(n/2)) = a(n)^3 * L^2 * A056060(n), where L = A056056(n)/A056059(n).

A056647 a(n) = A056623(A001405(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 9, 36, 1, 4, 4, 1, 9, 9, 1, 4, 1, 4, 4, 1, 1, 4, 100, 25, 100, 25, 9, 144, 9, 9, 1, 4, 25, 100, 100, 25, 9, 36, 4, 1, 4, 1, 25, 400, 225, 900, 1764, 441, 196, 49, 49, 784, 4, 1, 1, 16, 1, 16, 16, 4, 441, 441, 49, 196, 49, 196, 36, 9, 1, 4, 4, 1, 100, 25, 1225
Offset: 1

Views

Author

Labos Elemer, Aug 09 2000

Keywords

Comments

Previous name "Largest unitary square divisor of central binomial coefficient" was incorrect. See A376553 for the correct sequence with this name. - Amiram Eldar, Sep 28 2024

Examples

			a(28) = A056623(binomial(28,14)) = A056623(40116600) = 25.
		

Crossrefs

Formula

a(n) = A008833(A001405(n))/A055229(A001405(n))^2 = A056057(n)/A056059(n)^2.

Extensions

Incorrect name replaced with a formula by Amiram Eldar, Sep 28 2024

A056673 Number of unitary and squarefree divisors of binomial(n, floor(n/2)). Also the number of divisors of the powerfree part of A001405(n), A056060(n).

Original entry on oeis.org

1, 2, 2, 4, 4, 2, 4, 8, 4, 2, 16, 8, 8, 8, 8, 16, 32, 16, 32, 16, 32, 32, 64, 32, 16, 16, 8, 8, 32, 32, 64, 128, 128, 64, 256, 128, 128, 128, 512, 256, 512, 512, 512, 512, 64, 64, 256, 128, 128, 128, 128, 128, 256, 256, 2048, 2048, 4096, 4096, 2048, 2048, 2048, 2048
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Examples

			n = 14: binomial(15,7) = 3432 = 2*2*2*3*11*13, which has 32 divisors. Of those divisors, 16 are unitary: {1, 3, 8, 11, 13, 24, 33, 39, 88, 104, 143, 264, 312, 429, 1144, 3432}; 16 are squarefree: {1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858}. Only 8 of the divisors belong to both classes: {1, 3, 11, 13, 33, 39, 143, 429}. Thus, a(14) = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[With[{m = Binomial[n, Floor[n/2]]}, DivisorSum[m, 1 &, And[CoprimeQ[#, m/#], SquareFreeQ@ #] &]], {n, 62}] (* Michael De Vlieger, Sep 05 2017 *)
    f[p_, e_] := If[e == 1, 2, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[ Binomial[n, Floor[n/2]]]); Array[a, 60] (* Amiram Eldar, Sep 06 2020 *)
  • PARI
    a(n) = my(b=binomial(n, n\2)); sumdiv(b, d, issquarefree(d) && (gcd(d, b/d) == 1)); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A000005(A055231(x)) = A000005(A007913(x)/A055229(x)), where x = A001405(n) = binomial(n, floor(n/2)).
a(n) = A056671(A001405(n)). - Amiram Eldar, Sep 06 2020

A062791 Moebius transform of A001405 (binomial(n, floor(n/2))).

Original entry on oeis.org

1, 1, 2, 4, 9, 16, 34, 64, 123, 241, 461, 900, 1715, 3396, 6423, 12800, 24309, 48477, 92377, 184500, 352679, 704969, 1352077, 2703168, 5200290, 10398883, 20058174, 40113164, 77558759, 155110827, 300540194, 601067520, 1166802646, 2333581909, 4537567606
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			For n = 7, binomial(7,3) = 35, A001405(7/d) = {binomial(7,3), binomial(1,0)} = {35, 1}, mu(d) = {1, -1}, the sum is a(7) = 35 - 1 = 34.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(binomial(d, iquo(d, 2))*mobius(n/d), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 09 2017
  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, Floor[#/2]] * MoebiusMu[n/#] &]; Array[a, 35] (* Amiram Eldar, May 28 2025 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d, d\2) * moebius(n/d)); \\ Amiram Eldar, May 28 2025

Formula

a(n) = Sum_{d|n} A001405(n/d)*mu(d).

Extensions

Offset corrected by Eric Rowland, Jul 09 2017

A062798 Inverse Moebius transform of A001405 (binomial(n, floor(n/2))).

Original entry on oeis.org

1, 3, 4, 9, 11, 26, 36, 79, 130, 265, 463, 956, 1717, 3470, 6449, 12949, 24311, 48772, 92379, 185027, 352755, 705897, 1352079, 2705182, 5200311, 10402319, 20058430, 40120076, 77558761, 155124243, 300540196, 601093339, 1166803576, 2333630533
Offset: 1

Views

Author

Labos Elemer, Jul 19 2001

Keywords

Examples

			For n = 9, divisors = {1,3,9}, a(9) = binomial(1, 0) + binomial(3, 1) + binomial(9, 4) = 1 + 3 + 126 = 130.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, Floor[#/2]]&]; Array[a, 35] (* Amiram Eldar, May 28 2025 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d, d\2)); \\ Amiram Eldar, May 28 2025

Formula

a(n) = Sum_{d|n} binomial(d, floor(d/2)).

Extensions

Offset corrected by Amiram Eldar, May 28 2025

A081394 a(n) is the smallest k such that number of non-unitary prime divisors of central binomial coefficient, A001405(k) = C(k, floor(k/2)) equals n.

Original entry on oeis.org

1, 6, 10, 27, 96, 147, 363, 627, 959, 1547, 1919, 2641, 2645, 3339, 6241, 6909, 6913, 6943, 6923, 6937, 16405, 19981, 24325, 31675, 31679, 35329, 36959, 36963, 38915, 38927, 73563, 39729, 73577, 80095, 87205, 87309, 95035, 123307, 123305, 123369, 123367, 174239, 185915, 186361, 186369, 186373, 186381
Offset: 0

Views

Author

Labos Elemer, Mar 27 2003

Keywords

Examples

			n=8: a(8)=959, C(959,479) has 8 non-unitary prime divisors: {2,3,5,7,11,13,23,29} and 959 is the smallest.
		

Crossrefs

Programs

Formula

a(n) = Min{k; A056175(k) = n}.

Extensions

a(9)-a(19) from Michel Marcus, Sep 01 2019
a(20)-a(46) from Amiram Eldar, May 15 2023

A113409 A transform of the central binomial coefficients A001405.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 21, 39, 74, 141, 271, 521, 1004, 1939, 3756, 7291, 14176, 27599, 53805, 105031, 205268, 401573, 786328, 1541037, 3022528, 5932657, 11652617, 22901865, 45037432, 88616807, 174454943, 343606183, 677074350, 1334744305
Offset: 0

Views

Author

Paul Barry, Oct 28 2005

Keywords

Comments

Row sums of A113408.

Programs

  • Mathematica
    Table[Sum[Binomial[n - k, k]*Binomial[k, Floor[k/2]], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Mar 09 2017 *)
  • PARI
    for(n=0,25, print1(sum(k=0,floor(n/2), binomial(n-k,k)*binomial(k,floor(k/2))), ", ")) \\ G. C. Greubel, Mar 09 2017

Formula

G.f.: (1-xc(x^2))/(1-x^2-x^4c(x^4)), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(k, floor(k/2)).
a(n) = Sum_{k=0..n} C((n+k)/2, k)*C(floor((n-k)/2), floor((n-k)/4)).
Conjecture: (n+2)*a(n)-2*(n+1)*a(n-1) +(n-4)*a(n-2) +2*a(n-3) +4*(2-n)*a(n-4)=0. - R. J. Mathar, Nov 07 2012
a(n) ~ 2^(n + 3/2) / sqrt(3*Pi*n). - Vaclav Kotesovec, Nov 27 2017

A129383 Expansion of g(x) - x*g(x^2), where g(x) is the g.f. of A001405.

Original entry on oeis.org

1, 0, 2, 2, 6, 8, 20, 32, 70, 120, 252, 452, 924, 1696, 3432, 6400, 12870, 24240, 48620, 92252, 184756, 352464, 705432, 1351616, 2704156, 5199376, 10400600, 20056584, 40116600, 77555328, 155117520, 300533760, 601080390, 1166790240
Offset: 0

Views

Author

Paul Barry, Apr 12 2007

Keywords

Comments

Partial sums are A129384.

Crossrefs

Programs

  • Magma
    A129383:= func< n | Binomial(n,Floor(n/2)) - (n mod 2)*Binomial(Floor((n-1)/2),Floor((n-1)/4))  >;
    [A129383(n): n in [0..40]]; // G. C. Greubel, Feb 03 2024
    
  • Mathematica
    A129383[n_]:= With[{B=Binomial,F=Floor}, B[n,F[n/2]] - Mod[n,2]*B[(n- 1)/2, F[(n-1)/4]]];
    Table[A129383[n], {n,0,40}] (* G. C. Greubel, Feb 03 2024 *)
  • SageMath
    def A129383(n): return binomial(n,n//2) - (n%2)*binomial((n-1)/2,(n-1)//4)
    [A129383(n) for n in range(41)] # G. C. Greubel, Feb 03 2024

Formula

G.f.: 2/(1-2*x+sqrt(1-4*x^2)) - 2*x/(1-2*x^2+sqrt(1-4*x^4)).
a(n) = binomial(n,floor(n/2)) - (1/2)*(1-(-1)^n)*binomial((n-1)/2, floor((n-1)/4)).
Previous Showing 11-20 of 434 results. Next