cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A077817 Number of self-avoiding walks on the cubic lattice trapped after n steps.

Original entry on oeis.org

5, 20, 229, 921, 7156, 29567, 193932, 821797, 4902336, 21201528, 119162697, 523550761
Offset: 11

Views

Author

Hugo Pfoertner, Nov 17 2002

Keywords

Comments

Only 1/48 of all possible walks is counted by selecting the first step in +x direction and requiring the first steps changing y and z to be positive, with the first +y step before the first +z step.

References

Crossrefs

Programs

  • Fortran
    c Program provided at given link

Extensions

a(20)-a(22) from Bert Dobbelaere, Mar 23 2025

A077818 a(n) is the numerator of the probability P(n) of the occurrence of a 3-dimensional self-trapping walk of length n.

Original entry on oeis.org

40, 190, 15925, 48795, 86221819, 28522360751, 583791967829, 1801511107253, 32337280749408865
Offset: 11

Views

Author

Hugo Pfoertner, Nov 17 2002

Keywords

Comments

A comparison of the exact probabilities with simulation results obtained for 1.1*10^9 random walks is given under "Results of simulation, comparison with exact probabilities" in the first link. The behavior of P(n) for larger values of n is illustrated in "Probability density for the number of steps before trapping occurs" at the same location. P(n) has a maximum around n~=600 (P(600)~=1/4760) and drops exponentially for large n (P(45000)~=1/10^9). The average walk length determined by the numerical simulation is sum n=11..infinity (n*P(n))=3953.65 +-0.20.
A more accurate value for this length, determined from a simulation with 27*10^9 walks, is 3953.8+-0.1 (A378903). - Hugo Pfoertner, Dec 15 2024

Examples

			a(13)=15925, A077819(13)=A077820(13)=1 because there are 5 different probabilities for the 1832 (=8*A077817(13)) walks: 256 walks with probability p1=1/125000000, 88 with p2=1/146484375, 600 with p3=1/156250000, 728 with p4=1/146484375 and 160 with p5=1/244140625. P(13)=256*p1+88*p2+600*p3+728*p4+160*p5=637/(6*5^10)=25*637/(5^12*6)= 15295/(5^(13-1)*3^1*2^1)
		

References

  • See under A001412.
  • More references are given in the sci.math NG posting in the second link.

Crossrefs

Programs

  • Fortran
    c Program provided at first link

Formula

P(n) = a(n) / (5^(n-1) * 3^A077819(n) * 2^A077820(n)) = A377161(n)/A377162(n).

A078717 Number of n-step self-avoiding walks on cubic lattice with first step specified.

Original entry on oeis.org

1, 5, 25, 121, 589, 2821, 13565, 64661, 308981, 1468313, 6989025, 33140457, 157329085, 744818613, 3529191009, 16686979329, 78955042017, 372953947349, 1762672203269, 8319554639789, 39285015083693, 185296997240401, 874331369198569
Offset: 1

Views

Author

Hugo Pfoertner, Dec 18 2002

Keywords

References

Crossrefs

Equals A001412/6. Cf. A001411, A046661, A002902.

A118313 Sum of squared end-to-end distances of all n-step self-avoiding walks on the simple cubic lattice.

Original entry on oeis.org

0, 6, 72, 582, 4032, 25566, 153528, 886926, 4983456, 27401502, 148157880, 790096950, 4166321184, 21760624254, 112743796632, 580052260230, 2966294589312, 15087996161382, 76384144381272, 385066579325550, 1933885653380544, 9679153967272734, 48295148145655224, 240292643254616694, 1192504522283625600, 5904015201226909614, 29166829902019914840, 143797743705453990030, 707626784073985438752, 3476154136334368955958, 17048697241184582716248, 83487969681726067169454, 408264709609407519880320, 1993794711631386183977574, 9724709261537887936102872, 47376158929939177384568598, 230547785968352575619933376
Offset: 0

Views

Author

R. J. Mathar, May 14 2006

Keywords

Comments

Number of walks is A001412(n).
a(5) is 25556 according to MacDonald et al., but 25566 according to Clisby et al. and is therefore conjectural for now. - R. J. Mathar, Aug 31 2007
Confirmed that a(5) is 25566 [from Nathan Clisby]. Right-hand column, table, p.5 of Schram.

Crossrefs

Extensions

a(5) corrected by Nathan Clisby, Nov 24 2010
a(14), a(22) corrected by Hugo Pfoertner, Aug 13 2011

A342883 Number of n-step self-avoiding walks on 7-D cubic lattice.

Original entry on oeis.org

1, 14, 182, 2366, 30590, 395654, 5110070, 66009062, 852194966, 11002765718, 142019952830, 1833202179662, 23659632189662, 305360673698150, 3940760013826454, 50857078231126286, 656293571739976142, 8469305943784113806, 109290078485661202262, 1410313416278288850230
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342884 Number of n-step self-avoiding walks on 8-D cubic lattice.

Original entry on oeis.org

1, 16, 240, 3600, 53776, 803504, 11994096, 179054640, 2672126256, 39878886896, 595065468048, 8879592484240, 132491660323472, 1976912303612080, 29496313445323888, 440098575225868624, 6566302628140689744, 97969968518462054352, 1461698348385616122224
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342885 Number of n-step self-avoiding walks on 9-D cubic lattice.

Original entry on oeis.org

1, 18, 306, 5202, 88146, 1493874, 25300530, 428518386, 7256300850, 122876680626, 2080586127186, 35229409431570, 596495353475538, 10099744526658546, 171003188767881906, 2895335387107970706, 49021668492861718674, 829999403731225961874
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342886 Number of n-step self-avoiding walks on 10-D cubic lattice.

Original entry on oeis.org

1, 20, 380, 7220, 136820, 2593100, 49121660, 930556460, 17625825740, 333857601020, 6323384122580, 119767717450100, 2268399952520660, 42963566150826380, 813721674662589980, 15411746407417290020, 291893918240586194660, 5528387235193561980740
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342887 Number of n-step self-avoiding walks on 11-D cubic lattice.

Original entry on oeis.org

1, 22, 462, 9702, 203302, 4260542, 89253582, 1869809502, 39167457582, 820458452462, 17185914925542, 359989506212182, 7540511273930822, 157947298263243742, 3308420553034902382, 69299392385043268822, 1451565583054963249302, 30404929596858248780502
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.

A342888 Number of n-step self-avoiding walks on 12-D cubic lattice.

Original entry on oeis.org

1, 24, 552, 12696, 291480, 6692424, 153614760, 3526063752, 80931227016, 1857565708968, 42634594787160, 978544945823832, 22459264078075992, 515478463349872200, 11831064537706447464, 271542137952854806776, 6232321082672399260152, 143041632747658763159736
Offset: 0

Views

Author

N. J. A. Sloane, Mar 31 2021

Keywords

Crossrefs

For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888.
Previous Showing 11-20 of 52 results. Next