A238870 Number of compositions of n with c(1) = 1, c(i+1) - c(i) <= 1, and c(i+1) - c(i) != 0.
1, 1, 0, 1, 1, 0, 2, 2, 1, 4, 4, 4, 9, 10, 11, 21, 25, 30, 51, 62, 80, 125, 157, 208, 309, 399, 536, 772, 1013, 1373, 1938, 2574, 3503, 4882, 6540, 8918, 12329, 16611, 22672, 31183, 42182, 57588, 78952, 107092, 146202, 200037, 271831, 371057, 507053, 689885, 941558, 1285655, 1750672, 2388951, 3260459, 4442179, 6060948
Offset: 0
Keywords
Examples
The a(10) = 4 such compositions are: : : 1: [ 1 2 1 2 1 2 1 ] (composition) : : o o o : ooooooo (rendering as composition) : : O O O : O O O O O O O (rendering as fountain of coins) : : : 2: [ 1 2 1 2 3 1 ] : : o : o oo : oooooo : : O : O O O : O O O O O O : : : 3: [ 1 2 3 1 2 1 ] : : o : oo o : oooooo : : O : O O O : O O O O O O : : : 4: [ 1 2 3 4 ] : : o : oo : ooo : oooo : : O : O O : O O O : O O O O :
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( `if`(i=j, 0, b(n-j, j)), j=1..min(n, i+1))) end: a:= n-> b(n, 0): seq(a(n), n=0..60); # Alois P. Heinz, Mar 11 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[i == j, 0, b[n-j, j]], {j, 1, Min[n, i+1]}]]; a[n_] := b[n, 0]; a /@ Range[0, 60] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
-
Sage
# translation of the Maple program by Alois P. Heinz @CachedFunction def F(n, i): if n == 0: return 1 return sum( (i!=j) * F(n-j, j) for j in [1..min(n,i+1)] ) # A238870 # return sum( F(n-j, j) for j in [1, min(n,i+1)] ) # A005169 def a(n): return F(n, 0) print([a(n) for n in [0..50]]) # Joerg Arndt, Mar 20 2014
Formula
a(n) ~ c / r^n, where r = 0.733216317061133379740342579187365700397652443391231594... and c = 0.172010618097928709454463097802313209201440229976513439... . - Vaclav Kotesovec, Feb 17 2017
Comments