A240086 a(n) = Sum_{prime p|n} phi(gcd(p, n/p)) where phi is Euler's totient function.
0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 4, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 6, 5, 2, 2, 1, 3, 2, 2, 2, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 5, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 1, 7, 3, 5, 1, 3, 1, 2, 3
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a := n -> add(phi(igcd(d, n/d)), d = factorset(n)); seq(a(n), n=1..100);
-
Mathematica
a[n_] := Sum[EulerPhi[GCD[p, n/p]], {p, FactorInteger[n][[;;, 1]]}]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Aug 29 2023 *)
-
PARI
A240086(n) = sumdiv(n,p,(isprime(p)*eulerphi(gcd(p, n/p)))); \\ Antti Karttunen, Sep 23 2017
Formula
If n = p^2 for some prime p then a(n) = p - 1 and a(k) <= a(n) for k <= n. - Peter Luschny, Sep 05 2023
Extensions
More terms from Antti Karttunen, Sep 23 2017
Comments