cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 463 results. Next

A349109 Powerful numbers (A001694) whose sum of powerful divisors (including 1) is also powerful.

Original entry on oeis.org

1, 64, 243, 441, 1764, 9800, 15552, 28224, 41616, 60516, 82369, 88200, 189728, 226576, 329476, 336200, 648675, 741321, 968256, 1317904, 1428025, 1707552, 1943236, 2039184, 2056356, 2381400, 2446227, 2798929, 2965284, 2986568, 4372281, 5189400, 5271616, 6508832
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

Numbers k such that A112526(k) = A112526(A183097(k)) = 1.

Examples

			64 = 2^6 is a term since it is powerful and the sum of its powerful divisors, A183097(64) =  1 + 4 + 8 + 16 + 32 + 64 = 125 = 5^3 is also powerful.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;;,2]], # > 1 &]; f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := powQ[n] && powQ[s[n]]; Select[Range[7*10^6], q]
  • PARI
    isok(n) = ispowerful(n) && ispowerful(sumdiv(n, d, d*ispowerful(d))); \\ Michel Marcus, Nov 08 2021
    
  • PARI
    is(k) = {my(f = factor(k)); ispowerful(f) && ispowerful(prod(i = 1, #f~, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1) - f[i,1]));} \\ Amiram Eldar, Sep 14 2024

A363175 Primitive abundant numbers (A071395) that are powerful numbers (A001694).

Original entry on oeis.org

342225, 570375, 3172468, 4636684, 63126063, 99198099, 117234117, 171991125, 280495504, 319600125, 327921075, 404529741, 581549787, 635689593, 762155163, 1029447225, 1148667664, 1356949503, 1435045924, 1501500375, 1558495125, 1596961444, 1757705625, 1778362047
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

The least cubefull (A036966) term is a(154) = A363177(1) = 26376098024367 = 3^6 * 7^4 * 13^3 * 19^3.

Crossrefs

Intersection of A001694 and A071395.
Subsequence of A363169 and A363176.
Subsequences: A306796, A306797, A363177.
Cf. A036966.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1);
    primAbQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2;
    seq[max_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]]}, Select[Rest[pow], primAbQ]]; seq[10^10]
  • PARI
    isPrimAb(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); r > 2 && vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r < 2; }
    lista(lim) = {my(pow = List(), t); for(j=1, sqrtnint(lim\1, 3), for(i=1, sqrtint(lim\j^3), listput(pow, i^2*j^3))); select(x->isPrimAb(x), Set(pow)); }

A380254 Number of powerful numbers (in A001694) that do not exceed primorial A002110(n).

Original entry on oeis.org

1, 1, 2, 7, 22, 85, 330, 1433, 6450, 31555, 172023, 964560, 5891154, 37807505, 248226019, 1702890101, 12401685616, 95277158949, 744210074157, 6091922351106, 51332717836692, 438592279944173, 3898316990125822, 35515462315592564, 335052677538616216, 3299888425002527366
Offset: 0

Views

Author

Michael De Vlieger, Jan 19 2025

Keywords

Comments

In other words, A001694(a(n)) is the largest powerful number less than or equal to A002110(n).

Examples

			Let P = A002110 and let s = A001694.
a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1.
a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2.
a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6.
a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30.
a(4) = 22 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200} contains k <= 210, etc.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Sum[If[SquareFreeQ[ii], Floor[Sqrt[x/ii^3]], 0], {ii, x^(1/3)}];
    Table[f[#[[k + 1]]], {k, 0, Length[#] - 1}] &[
      FoldList[Times, 1, Prime[Range[12] ] ] ] (* function f after Robert G. Wilson v at A118896 *)
  • Python
    from math import isqrt
    from sympy import primorial, integer_nthroot, mobius
    def A380254(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        if n == 0: return 1
        m = primorial(n)
        c, l, j = squarefreepi(integer_nthroot(m, 3)[0]), 0, isqrt(m)
        while j>1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        return c-l # Chai Wah Wu, Jan 24 2025

Extensions

a(18)-a(25) from Chai Wah Wu, Jan 24 2025

A115675 Brilliant numbers (A078972) whose digit reversal is a powerful(1) number (A001694).

Original entry on oeis.org

4, 9, 10, 121, 169, 869, 961, 1273, 1843, 10201, 10609, 12769, 16171, 44521, 48361, 48613, 70597, 76121, 94249, 96721, 106009, 108853, 121879, 129307, 211591, 255953, 276491, 278699, 291149, 445051, 526567, 613927, 616571, 1026169
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			869 = 11*79 is brilliant and 968 = 2^3*11^2 is powerful.
		

Crossrefs

A115676 Powerful(1) numbers (A001694) whose digit reversal is a brilliant number (A078972).

Original entry on oeis.org

4, 9, 121, 169, 400, 900, 961, 968, 3481, 3721, 4000, 9000, 10201, 12100, 12167, 12544, 12769, 16384, 16900, 17161, 31684, 40000, 79507, 90000, 90601, 94249, 96100, 96721, 96800, 121000, 150544, 169000, 175616, 192200, 194672, 195112
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			968=2^3*11^2 is powerful and 869=11*79 is brilliant.
		

Crossrefs

A115687 Powerful(1) numbers (A001694) whose digit reversal is a semiprime (A001358).

Original entry on oeis.org

4, 9, 49, 64, 121, 169, 289, 400, 512, 625, 900, 961, 968, 1156, 1225, 1568, 1849, 2048, 2401, 2888, 3125, 3136, 3364, 3481, 3721, 4000, 4900, 4913, 5041, 5329, 5408, 6400, 6859, 6889, 7396, 8192, 8575, 9000, 9604, 10201, 10648, 10816, 10952
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			968=2^3*11^2 is powerful and 869=11*79 is semiprime.
		

Crossrefs

A115688 Semiprimes (A001358) whose digit reversal is a powerful(1) number (A001694).

Original entry on oeis.org

4, 9, 10, 46, 94, 121, 169, 215, 526, 869, 961, 982, 1042, 1273, 1405, 1843, 2918, 3194, 4069, 4633, 5213, 5221, 5758, 6313, 6511, 6937, 8045, 8402, 8651, 8882, 9235, 9481, 9586, 9886, 10201, 10609, 12538, 12769, 14023, 16171, 16327, 16582
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			869=11*79 is semiprime and 968=2^3*11^2 is powerful.
		

Crossrefs

Programs

  • Maple
    N:= 99999:
    S:= {1}:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      S:= S union map(t -> seq(t*p^j,j=2..floor(log[p](N/t))), S);
    od:
    digrev:= proc(x) local L;
      L:= convert(x,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    sort(convert({10} union select(t -> numtheory:-bigomega(t)=2, map(digrev, select(t -> t mod 10 <> 0, S))),list)); # Robert Israel, Dec 03 2019

A115691 Powerful(1) numbers (A001694) whose digit reversal is a triangular number.

Original entry on oeis.org

1, 100, 1000, 5400, 10000, 54000, 100000, 540000, 1000000, 1306449, 1728243, 5400000, 10000000, 50086125, 54000000, 100000000, 130644900, 172824300, 540000000, 1000000000, 1044000721, 1306449000, 1728243000, 5008612500
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			5400=2^3*3^3*5^2 is powerful and 45=T(9).
		

Crossrefs

Extensions

a(14)-a(24) from Donovan Johnson, Oct 01 2009

A115694 Cubes whose digit reversal is a powerful(1) number (A001694).

Original entry on oeis.org

1, 8, 27, 343, 1000, 1331, 8000, 27000, 343000, 1000000, 1030301, 1331000, 1367631, 8000000, 27000000, 343000000, 1000000000, 1003003001, 1030301000, 1033364331, 1331000000, 1334633301, 1367631000, 8000000000, 10662526601, 27000000000, 343000000000, 1000000000000
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			27 = 3^3 and 72 = 2^3*3^2 is powerful.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2300]^3,Min[FactorInteger[IntegerReverse[#]][[All,2]]]>1 || IntegerReverse[#]==1&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 08 2021 *)
  • PARI
    lista(kmax) = {my(c); for(k = 1, kmax, c = k^3; if(ispowerful(fromdigits( Vecrev(digits(c)))), print1(c, ", ")));} \\ Amiram Eldar, Feb 24 2024

Extensions

a(26)-a(28) from Amiram Eldar, Feb 24 2024

A115695 Powerful(1) numbers (A001694) whose digit reversal is a pentagonal number (A000326).

Original entry on oeis.org

1, 100, 500, 529, 1000, 1089, 2116, 5000, 6241, 10000, 50000, 52900, 100000, 103041, 108900, 151875, 211600, 500000, 529000, 549152, 624100, 1000000, 1089000, 2116000, 5000000, 5290000, 6241000, 10000000
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			529=23^2 is powerful and 925 is the 25th pentagonal number.
		

Crossrefs

Previous Showing 41-50 of 463 results. Next