cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A175111 a(n) = ((2*n+1)^5+(-1)^n)/2.

Original entry on oeis.org

1, 121, 1563, 8403, 29525, 80525, 185647, 379687, 709929, 1238049, 2042051, 3218171, 4882813, 7174453, 10255575, 14314575, 19567697, 26260937, 34671979, 45112099, 57928101, 73504221, 92264063, 114672503, 141237625, 172512625
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Partial sums of A175112.
Convolution of the finite sequence 1,116,967,1672,967,116,1 with A001753.

Programs

  • Magma
    I:=[1, 121, 1563, 8403, 29525, 80525, 185647]; [n le 7 select I[n] else 5*Self(n-1) - 9*Self(n-2) + 5*Self(n-3) + 5*Self(n-4) - 9*Self(n-5) + 5*Self(n-6) - Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[(1 + 116*x + 967*x^2 + 1672*x^3 + 967*x^4 + 116*x^5 + x^6)/((1 + x)*(x - 1)^6), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{5,-9,5,5,-9,5,-1},{1,121,1563,8403,29525,80525,185647},50] (* Harvey P. Dale, May 30 2014 *)

Formula

a(n) = 5*a(n-1) -9*a(n-2) +5*a(n-3) +5*a(n-4) -9*a(n-5) +5*a(n-6) -a(n-7).
G.f: (1+116*x+967*x^2+1672*x^3+967*x^4+116*x^5+x^6)/((1+x)*(x-1)^6).

A176646 a(n) is the number of convex pentagons in an n-triangular net.

Original entry on oeis.org

0, 0, 3, 21, 78, 216, 498, 1014, 1884, 3264, 5349, 8379, 12642, 18480, 26292, 36540, 49752, 66528, 87543, 113553, 145398, 184008, 230406, 285714, 351156, 428064, 517881, 622167, 742602, 880992, 1039272, 1219512, 1423920, 1654848, 1914795, 2206413, 2532510, 2896056
Offset: 1

Views

Author

Jonathan Vos Post, Dec 21 2010

Keywords

Comments

See P(n) in Theorem 2.1, p.2 of Zhu.

Crossrefs

Cf. A166189 (for the hexagons).

Programs

  • Magma
    [(1/320)*(12*n^5 -10*n^4 -60*n^3 +40*n^2 +48*n -15 +15*(-1)^n): n in [1..40]]; // G. C. Greubel, Jul 02 2021
    
  • Maple
    A176646:= n-> (12*n^5 -10*n^4 -60*n^3 +40*n^2 +48*n -15 +15*(-1)^n)/320;
    seq(A176646(n), n=1..40); # R. J. Mathar, Dec 21 2010
  • Mathematica
    LinearRecurrence[{5,-9,5,5,-9,5,-1}, {0,0,3,21,78,216,498}, 40] (* Harvey P. Dale, Jan 14 2015 *)
  • PARI
    f(k) = (12*k^5 + 25*k^4 + 5*k^3 - 10*k^2 - 2*k)/10;
    g(k) = (12*k^5 - 5*k^4 - 15*k^3 + 5*k^2 + 3*k)/10;
    a(n) = if (n%2, f((n-1)/2), g(n/2)); \\ Michel Marcus, Jul 04 2021
  • Sage
    [(1/320)*(12*n^5 -10*n^4 -60*n^3 +40*n^2 +48*n -15 +15*(-1)^n) for n in (1..40)] # G. C. Greubel, Jul 02 2021
    

Formula

From G. C. Greubel, Jul 03 2021: (Start)
a(n) = (1/320)*(12*n^5 - 10*n^4 - 60*n^3 + 40*n^2 + 48*n - 15 + 15*(-1)^n).
a(2*n+1) = n*(n+1)*(12*n^3 + 13*n^2 - 8*n - 2)/10.
a(2*n) = n*(4*n-3)*(3*n+1)*(n-1)*(n+1)/10.
G.f.: 3*x^3*(1 + 2*x)/((1 + x)*(1 - x)^6).
E.g.f.: (1/320)*(15*exp(-x) - (15 -30*x +30*x^2 -180*x^3 -110*x^4 -12*x^5)*exp(x)). (End)
a(n) = 3*A001753(n-3) + 6*A001753(n-4). - R. J. Mathar, Jul 04 2021

Extensions

Definition corrected and edited by Michel Marcus and G. C. Greubel, Jul 03 2021

A054497 Number of symmetric nonnegative integer 7 X 7 matrices with sum of elements equal to 4*n, under action of dihedral group D_4.

Original entry on oeis.org

1, 7, 31, 105, 300, 756, 1732, 3676, 7330, 13870, 25102, 43714, 73612, 120340, 191620, 298012, 453739, 677677, 994565, 1436435, 2044328, 2870296, 3979768, 5454280, 7394660, 9924668, 13195196, 17389028, 22726280, 29470520, 37935704, 48493928, 61584149
Offset: 0

Views

Author

Vladeta Jovovic, May 14 2000

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)^7(1-x^2)^3),{x,0,30}],x] (* Harvey P. Dale, Feb 03 2012 *)
  • PARI
    Vec(1 / ((1-x)^7*(1-x^2)^3) + O(x^40)) \\ Colin Barker, Jan 15 2017

Formula

G.f.: 1 / ((1-x)^7 * (1-x^2)^3).
a(0)=1, a(1)=7, a(2)=31, a(3)=105, a(4)=300, a(5)=756, a(6)=1732, a(7)=3676, a(8)=7330, a(9)=13870, a(10)=25102, a(11)=43714, a(12)=73612, a(n) = 7*a(n-1) - 18*a(n-2) + 14*a(n-3) + 25*a(n-4) - 63*a(n-5) + 36*a(n-6) + 36*a(n-7) - 63*a(n-8) + 25*a(n-9) + 14*a(n-10) - 18*a(n-11) + 7*a(n-12) - a(n-13). - Harvey P. Dale, Feb 03 2012
a(n) = ((2835*(4017+79*(-1)^n) + 18*(1513217+4095*(-1)^n)*n + 90*(284609+63*(-1)^n)*n^2 + 12771104*n^3 + 3787056*n^4 + 701400*n^5 + 81900*n^6 + 5856*n^7 + 234*n^8 + 4*n^9)) / 11612160. - Colin Barker, Jan 15 2017

A054549 Number of symmetric nonnegative integer 9 X 9 matrices with sum of elements equal to 4*n, under action of dihedral group D_4.

Original entry on oeis.org

1, 9, 51, 219, 786, 2466, 6974, 18126, 43929, 100321, 217683, 451707, 901128, 1735752, 3239928, 5878328, 10393902, 17950878, 30340682, 50273658, 81787476, 130811124, 205935756, 319456044, 488764246, 738197766, 1101468114, 1624826306, 2371158504, 3425244456
Offset: 0

Views

Author

Vladeta Jovovic, May 14 2000

Keywords

Crossrefs

Programs

  • PARI
    Vec(1 / ((1-x)^9*(1-x^2)^6) + O(x^40)) \\ Colin Barker, Jan 15 2017

Formula

G.f.: 1 / ((1-x)^9 * (1-x^2)^6).
a(n) = ((85135050*(256719+5425*(-1)^n) + 1890*(30592018355+141137997*(-1)^n)*n + 9*(7020005494399+6456074625*(-1)^n)*n^2 + 15288*(2534162507+393525*(-1)^n)*n^3 + 455*(33274853083+654885*(-1)^n)*n^4 + 126126*(31995443+45*(-1)^n)*n^5 + 763179408992*n^6 + 104737240608*n^7 + 10538322080*n^8 + 777020244*n^9 + 41479438*n^10 + 1559376*n^11 + 39130*n^12 + 588*n^13 + 4*n^14)) / 22317642547200. - Colin Barker, Jan 15 2017
Previous Showing 11-14 of 14 results.