A296435
Expansion of e.g.f. log(1 + arcsinh(x)).
Original entry on oeis.org
0, 1, -1, 1, -2, 13, -64, 173, -720, 12409, -114816, 370137, -1491456, 88556037, -1263184896, 2668274373, 21448022016, 2491377242481, -50233550831616, -34526890553679, 5153298175033344, 202383113207336829, -5453228045913292800, -25792743610973373219, 1393299559788718325760
Offset: 0
E.g.f.: A(x) = x/1! - x^2/2! + x^3/3! - 2*x^4/4! + 13*x^5/5! - 64*x^6/6! + ...
-
S:= series(ln(1+arcsinh(x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 12 2017
-
nmax = 24; CoefficientList[Series[Log[1 + ArcSinh[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 24; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]], {x, 0, nmax}], x] Range[0, nmax]!
-
Vecrev(Pol(serlaplace(log(1 + asinh(x + O(x^30)))))) \\ Andrew Howroyd, Dec 12 2017
A296464
Expansion of e.g.f. arcsin(arcsin(x)) (odd powers only).
Original entry on oeis.org
1, 2, 28, 1024, 71632, 8192736, 1392793920, 330041217024, 104069101383936, 42159457593506304, 21346870862961183744, 13213529766600134344704, 9818417126704155249954816, 8625630408510010165396070400, 8844234850947343105068735283200, 10467364426053362392901751845683200
Offset: 0
arcsin(arcsin(x)) = x/1! + 2*x^3/3! + 28*x^5/5! + 1024*x^7/7! + 71632*x^9/9! + ...
-
nmax = 16; Table[(CoefficientList[Series[ArcSin[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 16; Table[(CoefficientList[Series[-I Log[Log[I x + Sqrt[1 - x^2]] + Sqrt[1 + Log[I x + Sqrt[1 - x^2]]^2]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A296466
Expansion of e.g.f. arcsinh(arcsin(x)) (odd powers only).
Original entry on oeis.org
1, 0, 8, 56, 8000, 342144, 68623488, 8295676416, 2411783847936, 584142614728704, 240810283258527744, 96772676958798741504, 54867909992513301282816, 32661008325245409302937600, 24691868812821871169667072000, 20243305132513358736699378892800, 19829947398943934886214249532620800
Offset: 0
arcsinh(arcsin(x)) = x/1! + 8*x^5/5! + 56*x^7/7! + 8000*x^9/9! + 342144*x^11/11! + 68623488*x^13/13! + ...
-
nmax = 17; Table[(CoefficientList[Series[ArcSinh[ArcSin[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 17; Table[(CoefficientList[Series[Log[Sqrt[1 - Log[I x + Sqrt[1 - x^2]]^2] - I Log[I x + Sqrt[1 - x^2]]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A297009
Expansion of e.g.f. arcsin(x*exp(x)).
Original entry on oeis.org
0, 1, 2, 4, 16, 104, 816, 7792, 89216, 1177920, 17603200, 294334976, 5442281472, 110221745152, 2426850793472, 57718658411520, 1474590580228096, 40274407232294912, 1171043235561185280, 36115912820342407168, 1177554628069200035840, 40471207964013864124416
Offset: 0
arcsin(x*exp(x)) = x^1/1! + 2*x^2/2! + 4*x^3/3! + 16*x^4/4! + 104*x^5/5! + 816*x^6/6! + ...
-
a:=series(arcsin(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[ArcSin[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[-I Log[I x Exp[x] + Sqrt[1 - x^2 Exp[2 x]]], {x, 0, nmax}], x] Range[0, nmax]!
-
first(n) = my(x='x+O('x^n)); Vec(serlaplace(asin(exp(x)*x)), -n) \\ Iain Fox, Dec 23 2017
A353818
Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + arcsin(x).
Original entry on oeis.org
1, 0, 1, -4, 29, -174, 1583, -13168, 144153, -1485330, 20127867, -253341144, 3978820221, -57986205900, 1057400360235, -18016221644544, 370244721585681, -6993826454599146, 162968423791332339, -3490951922268853320, 88052648301403014789, -2075060448716599488276
Offset: 1
-
nn = 22; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcSin[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A353819
Product_{n>=1} (1 + a(n)*x^n/n!) = 1 + arcsinh(x).
Original entry on oeis.org
1, 0, -1, 4, -11, 66, -547, 4880, -27351, 263310, -3258663, 39791016, -390445563, 5477278548, -84140635815, 1486404086016, -18431412645519, 322018685539542, -6436900596281679, 133183534639917240, -2208721087854287811, 49383164607876494604, -1149793471388581053219
Offset: 1
-
nn = 23; f[x_] := Product[(1 + a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcSinh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A178575
Number of permutations of {1,2,...,3n} whose cycle lengths are all divisible by 3.
Original entry on oeis.org
1, 2, 160, 62720, 68992000, 163235072000, 710399033344000, 5129081020743680000, 57096929922918645760000, 927825111247427993600000000, 21095031729321522862489600000000, 648714415740095471067280179200000000, 26246985260844262759382156050432000000000
Offset: 0
a(1) = 2 because we have (123) and (132).
- Herbert S. Wilf, Generatingfunctiontology, page 209
-
a:= n-> factorial(3*n)*(mul(1+3*i, i = 1 .. n-1))/(factorial(n)*3^n): seq(a(n), n = 0 .. 11);
-
Table[(-1)^(n/3) Binomial[-1/3,n/3]n!,{n,0,30,3}]
-
v=Vec(serlaplace(1/(1-x^3+O(x^50))^(1/3))); vector(#v\3,n,v[3*n-2])
A291560
E.g.f. A(x,k) satisfies: sin(A(x,k)) = k * sin(x).
Original entry on oeis.org
1, -1, 1, 1, -10, 9, -1, 91, -315, 225, 1, -820, 8694, -18900, 11025, -1, 7381, -224730, 1143450, -1819125, 893025, 1, -66430, 5684679, -61647300, 203378175, -255405150, 108056025, -1, 597871, -142714845, 3162834675, -19494349875, 47377655325, -49165491375, 18261468225, 1, -5380840, 3573251964, -158546770200, 1734021238950, -7311738634200, 14041664336700, -12417798393000, 4108830350625, -1, 48427561, -89379726660, 7858123038900, -148224512094750, 1025176095093150, -3257761647640500, 5167045911327300, -3981456609755625, 1187451971330625
Offset: 1
This triangle of coefficients T(n,r) in e.g.f. A(x,k) begins:
[1],
[-1, 1],
[1, -10, 9],
[-1, 91, -315, 225],
[1, -820, 8694, -18900, 11025],
[-1, 7381, -224730, 1143450, -1819125, 893025],
[1, -66430, 5684679, -61647300, 203378175, -255405150, 108056025],
[-1, 597871, -142714845, 3162834675, -19494349875, 47377655325, -49165491375, 18261468225],
[1, -5380840, 3573251964, -158546770200, 1734021238950, -7311738634200, 14041664336700, -12417798393000, 4108830350625],
[-1, 48427561, -89379726660, 7858123038900, -148224512094750, 1025176095093150, -3257761647640500, 5167045911327300, -3981456609755625, 1187451971330625],
[1, -435848050, 2234929014549, -387282522072600, 12391233508580850, -136052492985945900, 674608025957515650, -1713147048499887000, 2313226290268018125, -1579311121869731250, 428670161650355625], ...
where e.g.f. A(x,k) = Sum_{n>=1, r=1..n} T(n,r) * x^(2*n-1) * k^(2*r-1) / (2*n-1)!.
E.g.f.: A(x,k) = k*x + (k^3 - k)*x^3/3! + (9*k^5 - 10*k^3 + k)*x^5/5! + (225*k^7 - 315*k^5 + 91*k^3 - k)*x^7/7! + (11025*k^9 - 18900*k^7 + 8694*k^5 - 820*k^3 + k)*x^9/9! + (893025*k^11 - 1819125*k^9 + 1143450*k^7 - 224730*k^5 + 7381*k^3 - k)*x^11/11! + (108056025*k^13 - 255405150*k^11 + 203378175*k^9 - 61647300*k^7 + 5684679*k^5 - 66430*k^3 + k)*x^13/13! + (18261468225*k^15 - 49165491375*k^13 + 47377655325*k^11 - 19494349875*k^9 + 3162834675*k^7 - 142714845*k^5 + 597871*k^3 - k)*x^15/15! + (4108830350625*k^17 - 12417798393000*k^15 + 14041664336700*k^13 - 7311738634200*k^11 + 1734021238950*k^9 - 158546770200*k^7 + 3573251964*k^5 - 5380840*k^3 + k)*x^17/17! + (1187451971330625*k^19 - 3981456609755625*k^17 + 5167045911327300*k^15 - 3257761647640500*k^13 + 1025176095093150*k^11 - 148224512094750*k^9 + 7858123038900*k^7 - 89379726660*k^5 + 48427561*k^3 - k)*x^19/19! +...
such that sin(A(x,k)) = k * sin(x).
-
T[n_, k_] := If[ n < 1, 0, (2 n - 1)! Coefficient[ SeriesCoefficient[ ArcSin[y Sin[x]], {x, 0, 2 n - 1}], y, 2 k - 1]]; (* Michael Somos, Jul 03 2018 *)
T[n_, k_] := ((-1)^n/((2*k - 1)^2*4^(2*k - 1)))*((2*k)!/k!)^2 * Sum[((-1)^i*(2*i - 1)^(2*n - 1))/((k - i)!*(k + i - 1)!), {i, 1, n}]; (* Vjekoslav-Leonard Prcic, Oct 10 2018 *)
-
{T(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1,x), 2*r-1, k)}
for(n=1, 10, for(r=1, n, print1(T(n, r), ", ")); print(""))
A296679
Expansion of e.g.f. arcsinh(arctanh(x)) (odd powers only).
Original entry on oeis.org
1, 1, 13, 341, 18649, 1599849, 205524837, 36391450941, 8546308276401, 2564025898856913, 957697868873929149, 435619128300038521893, 237104370189582892175241, 152148421079949399306125625, 113672892845152570858515803925, 97820056722556900357454981990925
Offset: 0
arcsinh(arctanh(x)) = x/1! + x^3/3! + 13*x^5/5! + 341*x^7/7! + 18649*x^9/9! + 1599849*x^11/11! + ...
-
nmax = 16; Table[(CoefficientList[Series[ArcSinh[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 16; Table[(CoefficientList[Series[Log[(Log[1 + x] - Log[1 - x])/2 + Sqrt[1 + (Log[1 + x] - Log[1 - x])^2/4]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A296680
Expansion of e.g.f. arcsin(arctanh(x)) (odd powers only).
Original entry on oeis.org
1, 3, 53, 2359, 198953, 27412011, 5625656541, 1613676694239, 617477049181521, 304167421243513683, 187546541676182230149, 141512355477854459198343, 128265950128144233675269241, 137512081213377707268891639675, 172108297920263623816775456321325
Offset: 0
arcsin(arctanh(x)) = x/1! + 3*x^3/3! + 53*x^5/5! + 2359*x^7/7! + 198953*x^9/9! + 27412011*x^11/11! + ...
-
S:= series(arcsin(arctanh(x)),x,52):
seq(coeff(S,x,n)*n!,n=1..51,2); # Robert Israel, Dec 18 2017
-
nmax = 15; Table[(CoefficientList[Series[ArcSin[ArcTanh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
nmax = 15; Table[(CoefficientList[Series[-I Log[(I/2) (Log[1 + x] - Log[1 - x]) + Sqrt[1 - (Log[1 + x] - Log[1 - x])^2/4]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
Comments