cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 92 results. Next

A297010 Expansion of e.g.f. arcsinh(x*exp(x)).

Original entry on oeis.org

0, 1, 2, 2, -8, -76, -264, 1672, 36800, 261648, -1443680, -66164704, -792152448, 2482671424, 289529373056, 5294082629760, 1648955815936, -2474170098704128, -65494141255724544, -303927676523118080, 35926135133071923200, 1341060635191667045376
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 23 2017

Keywords

Examples

			arcsinh(x*exp(x)) = x^1/1! + 2*x^2/2! + 2*x^3/3! - 8*x^4/4! - 76*x^5/5! - 264*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(arcsinh(x*exp(x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 21; CoefficientList[Series[ArcSinh[x Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Log[x Exp[x] + Sqrt[1 + x^2 Exp[2 x]]], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    first(n) = my(x='x+O('x^n)); Vec(serlaplace(asinh(exp(x)*x)), -n) \\ Iain Fox, Dec 23 2017

A353913 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arcsin(x).

Original entry on oeis.org

1, -2, 1, -28, 29, -194, 1583, -61328, 144153, -1697262, 20127867, -191762088, 3978820221, -66586416948, 1057400360235, -58260102945024, 370244721585681, -7992573879248406, 162968423791332339, -3399970067764816824, 88052648301403014789, -2360852841450177138924
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcSin[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A353914 Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + arcsinh(x).

Original entry on oeis.org

1, -2, -1, -20, -11, 46, -547, -29840, -27351, 232818, -3258663, -29911848, -390445563, 4450393260, -84140635815, -12153983817984, -18431412645519, 286688710444842, -6436900596281679, -169286474970429624, -2208721087854287811, 41892263643715799796, -1149793471388581053219
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 23; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - ArcSinh[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten

A087137 a(n) is the number of permutations in the symmetric group S_n that contain an odd cycle.

Original entry on oeis.org

0, 1, 1, 6, 15, 120, 495, 5040, 29295, 362880, 2735775, 39916800, 370945575, 6227020800, 68916822975, 1307674368000, 16813959537375, 355687428096000, 5214921734397375, 121645100408832000, 2004231846526284375, 51090942171709440000, 934957186489800849375
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x)-1/Sqrt[1-x^2], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 21 2014 *)
  • PARI
    x='x+O('x^33); concat(0, Vec(serlaplace(1/(1-x)-1/sqrt(1-x^2)))) \\ Michel Marcus, Sep 21 2014

Formula

E.g.f.: 1/(1-x)-1/sqrt(1-x^2).
If n is odd then a(n) = n! else a(n) = n!-((n-1)!!)^2.

Extensions

Formulae and more terms from Vladeta Jovovic, Oct 31 2003
Two more terms from Michel Marcus, Sep 21 2014

A161119 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of opposite parities (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 9, 0, 6, 9, 0, 72, 0, 24, 0, 225, 0, 600, 0, 120, 225, 0, 4050, 0, 5400, 0, 720, 0, 11025, 0, 66150, 0, 52920, 0, 5040, 11025, 0, 352800, 0, 1058400, 0, 564480, 0, 40320, 0, 893025, 0, 9525600, 0, 17146080, 0, 6531840, 0, 362880, 893025, 0, 44651250, 0, 238140000, 0, 285768000, 0, 81648000, 0, 3628800
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Comments

T(n,k) is the number of basis elements in the order-n Brauer algebra that have propagation number k. - John M. Campbell, Dec 08 2021

Examples

			T(3,1)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
Triangle starts:
  1;
  0,  1;
  1,  0,  2;
  0,  9,  0,  6;
  9,  0, 72,  0, 24;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if `mod`(n-k, 2) = 1 then 0 else binomial(n, k)^2*factorial(k)*(product(2*j-1, j = 1 .. (1/2)*n-(1/2)*k))^2 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
  • PARI
    dfo(n) = if (n<0, (-1)^n/dfo(-n), (2*n)! / n! / 2^n); \\ A001147
    T(n,k) = if ((n-k)%2, 0, k!*binomial(n,k)^2*dfo((n-k)/2)^2);
    row(n) = vector(n+1, k, T(n,k-1)) \\ Michel Marcus, Dec 09 2021

Formula

T(n,k) = k!*binomial(n,k)^2*(n-k-1)!!^2 if n-k is even; T(n,k) = 0 if n-k is odd.
Sum of row n = (2n-1)!! = A001147(n).
T(n,n) = n! = A000142(n).
T(2n,0) = A001818(n).
Sum_{k>=0} k*T(n,k) = n^2*(2n-3)!! = A161120(n).

A161121 Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of the same parity (0 <= k <= 2*floor(n/2)).

Original entry on oeis.org

1, 1, 2, 0, 1, 6, 0, 9, 24, 0, 72, 0, 9, 120, 0, 600, 0, 225, 720, 0, 5400, 0, 4050, 0, 225, 5040, 0, 52920, 0, 66150, 0, 11025, 40320, 0, 564480, 0, 1058400, 0, 352800, 0, 11025, 362880, 0, 6531840, 0, 17146080, 0, 9525600, 0, 893025, 3628800, 0, 81648000, 0
Offset: 0

Views

Author

Emeric Deutsch, Jun 02 2009

Keywords

Comments

Row n contains 1 + 2*floor(n/2) terms.
Sum of row n = (2n-1)!! (A001147).
a(n,0) = n! (A000142).
a(2n,2n) = A001818(n).
Sum_{k>=0} k*T(n,k) = n*(n-1)*(2n-3)!! = A161122(n).

Examples

			T(3,2)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
Triangle starts:
    1;
    1;
    2,   0,   1;
    6,   0,   9;
   24,   0,  72,   0,   9;
  120,   0, 600,   0, 225;
		

Crossrefs

Programs

  • Maple
    T := proc (n, k) if n < k then 0 elif `mod`(k, 2) = 0 then binomial(n, k)^2*factorial(n-k)*(product(2*j-1, j = 1 .. (1/2)*k))^2 else 0 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. 2*floor((1/2)*n)) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := If[EvenQ[k], (n-k)! Binomial[n, k]^2 ((k-1)!!)^2, 0];
    Table[T[n, k], {n, 0, 10}, {k, 0, 2 Quotient[n, 2]}] // Flatten (* Jean-François Alcover, Feb 01 2023 *)

Formula

T(n,k) = (n-k)!*binomial(n,k)^2*((k-1)!!)^2 if k is even; T(n,k) = 0 if k is odd.

A197037 Decimal expansion of the modified Struve L-function of order 0 at 1.

Original entry on oeis.org

7, 1, 0, 2, 4, 3, 1, 8, 5, 9, 3, 7, 8, 9, 0, 8, 8, 8, 7, 3, 8, 5, 2, 6, 6, 7, 7, 8, 1, 1, 6, 5, 0, 7, 4, 4, 9, 4, 4, 4, 0, 9, 9, 5, 8, 3, 2, 9, 7, 0, 3, 1, 9, 8, 1, 2, 3, 0, 1, 5, 1, 6, 5, 5, 7, 3, 9, 6, 9, 1, 1, 5, 6, 8, 8, 2, 3, 8, 1, 8, 0, 9, 7, 7, 3, 5, 4, 0, 3, 9, 1, 5, 7, 9, 1, 1, 7, 2, 5, 8, 3, 3, 6, 3, 6, 1, 0
Offset: 0

Views

Author

R. J. Mathar, Oct 08 2011

Keywords

Examples

			0.710243185937890888738526...
		

Programs

  • Maple
    StruveL(0,1); evalf(%) ;
  • Mathematica
    RealDigits[ StruveL[0, 1], 10, 107] // First (* Jean-François Alcover, Feb 20 2013 *)

Formula

L_0(1) = sum_{k>=0} 1/(2*4^k*Gamma(3/2+k)^2) = (2/Pi)*sum_{k>=1} 1/A001818(k).

A296728 Expansion of e.g.f. arcsin(x*cos(x)) (odd powers only).

Original entry on oeis.org

1, -2, -16, 8, 12672, 571264, -44351360, -12355211520, -452681248768, 478190483394560, 132554796040912896, -18854516962334277632, -27186884683859043123200, -5502410397289951851773952, 6273206188133923322747420672, 5389680791235134726930445369344
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x*cos(x)) = x/1! - 2*x^3/3! - 16*x^5/5! + 8*x^7/7! + 12672*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcSin[x Cos[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asin(x*cos(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsin(x*cos(x)).

A296729 Expansion of e.g.f. arcsin(x*cosh(x)) (odd powers only).

Original entry on oeis.org

1, 4, 44, 1912, 156816, 21506816, 4420845376, 1271132964480, 487161448339712, 239980527068474368, 147742478026391141376, 111153314734461183924224, 100339775128577885016985600, 107037870347952811373977239552, 133204585741561810426003651444736
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 19 2017

Keywords

Examples

			arcsin(x*cosh(x)) = x/1! + 4*x^3/3! + 44*x^5/5! + 1912*x^7/7! + 156816*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[ArcSin[x Cosh[x]], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
  • PARI
    first(n) = x='x+O('x^(2*n)); vecextract(Vec(serlaplace(asin(x*cosh(x)))), (4^n - 1)/3) \\ Iain Fox, Dec 19 2017

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arcsin(x*cosh(x)).

A302605 a(n) = n! * [x^n] exp(n*x)*arcsin(x).

Original entry on oeis.org

0, 1, 4, 28, 272, 3384, 51300, 917064, 18884672, 440168832, 11454902500, 329208395264, 10355322975120, 353851897861760, 13052503620917124, 516917167506777600, 21875427250996723968, 985164766018898243584, 47043119138733155306052, 2374168079889664129576960
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] ArcSin[x], {x, 0, n}], {n, 0, 19}]

Formula

a(n) = Sum_{k=1..n} binomial(n,k)*(k-2)!!^2*n^(n-k)*(1-(-1)^k)/2. - Fabian Pereyra, Oct 05 2024
Previous Showing 31-40 of 92 results. Next