cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001818 Squares of double factorials: (1*3*5*...*(2n-1))^2 = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 9, 225, 11025, 893025, 108056025, 18261468225, 4108830350625, 1187451971330625, 428670161650355625, 189043541287806830625, 100004033341249813400625, 62502520838281133375390625, 45564337691106946230659765625, 38319607998220941779984862890625
Offset: 0

Views

Author

Keywords

Comments

Number of permutations in S_{2n} in which all cycles have even length (cf. A087137).
Also number of permutations in S_{2n} in which all cycles have odd length. - Vladeta Jovovic, Aug 10 2007
a(n) is the sum over all multinomials M2(2*n,k), k from {1..p(2*n)} restricted to partitions with only even parts. p(2*n)= A000041(2*n) (partition numbers) and for the M2-multinomial numbers in A-St order see A036039(2*n,k). - Wolfdieter Lang, Aug 07 2007
From Zhi-Wei Sun, Jun 26 2022: (Start)
Conjecture 1: For any primitive 2n-th root zeta of unity, the permanent of the 2n X 2n matrix [m(j,k)]_{j,k=1..2n} coincides with a(n) = ((2n-1)!!)^2, where m(j,k) is (1+zeta^(j-k))/(1-zeta^(j-k)) if j is not equal to k, and 1 otherwise.
The determinant of [m(j,k)]_{j,k=1..2n} was shown to be (-1)^(n-1)*((2n-1)!!)^2/(2n-1) by Han Wang and Zhi-Wei Sun in 2022.
Conjecture 2: Let p be an odd prime. Then the permanent of (p-1) X (p-1) matrix [f(j,k)]_{j,k=1..p-1} is congruent to a((p-1)/2) = ((p-2)!!)^2 modulo p^2, where f(j,k) is (j+k)/(j-k) if j is not equal to k, and f(j,k) = 1 otherwise. (End)

Examples

			Multinomial representation for a(2): partitions of 2*2=4 with even parts only: (4) with position k=1, (2^2) with k=3; M2(4,1)= 6 and M2(4,3)= 3, adding up to a(2)=9.
G.f. = 1 + x + 9*x^2 + 225*x^3 + 11025*x^4 + 893025*x^5 + 108056025*x^6 + ...
		

References

  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.34(c).

Crossrefs

Bisection of A012248.
Right-hand column 1 in triangle A008956.

Programs

  • Magma
    DoubleFactorial:=func< n | &*[n..2 by -2] >; [DoubleFactorial((2*n-1))^2: n in [0..20] ]; // Vincenzo Librandi, Jul 21 2017
  • Maple
    a := proc(m) local k; 4^m*mul((-1)^k*(k-m-1/2),k=1..2*m) end; # Peter Luschny, Jun 01 2009
  • Mathematica
    FoldList[Times,1,Range[1,25,2]]^2 (* or *) Join[{1},(Range[1,29,2]!!)^2] (* Harvey P. Dale, Jun 06 2011, Apr 10 2012 *)
    Table[((2 n - 1)!!)^2, {n, 0, 30}] (* Vincenzo Librandi, Jul 21 2017 *)
  • PARI
    a(n)=((2*n)!/(n!*2^n))^2
    
  • PARI
    {a(n) = if( n<0, 1 / a(-n), sqr((2*n)! / (n! * 2^n)))}; /* Michael Somos, Jan 06 2017 */
    

Formula

a(n) = A001147(n)^2.
a(n) = A111595(2*n, 0).
a(n) = (2*n-1)!*Sum_{k=0..n-1} binomial(2*k,k)/4^k, n >= 1. - Wolfdieter Lang, Aug 23 2005
arcsinh(x) = Sum_{n>=1} (-1)^(n-1)*a(n)*x^(2*n-1)/(2*n-1)!. - James R. Buddenhagen, Mar 24 2009
From Karol A. Penson, Oct 21 2009: (Start)
G.f.: Sum_{n>=0} a(n)*x^n/(n!)^2 = 2*EllipticK(2*sqrt(x))/Pi.
Asymptotically: a(n) = (2/((exp(-1/2))^2*(exp(1/2))^2)-1/(6*(exp(-1/2))^2*(exp(1/2))^2*n)+1/(144*(exp(-1/2))^2*(exp(1/2))^2*n^2)+O(1/n^3))*(2^n)^2/(((1/n)^n)^2*(exp(n))^2), n->infinity.
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation:
a(n) = Integral_{x>=0} x^n*BesselK(0,sqrt(x))/(Pi*sqrt(x)).
This solution is unique.
(End)
D-finite with recurrence: a(0) = 1, a(n) = (2*n-1)^2*a(n-1), n > 0.
a(n) ~ 2*2^(2*n)*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: 1/sqrt(1-x^2) = Sum_{n >= 0} a(n)*x^(2*n)/(2*n)!. Also arcsin(x) = Sum_{n >= 0} a(n)*x^(2*n+1)/(2*n+1)!. - Michael Somos, Jul 03 2002
(-1)^n*a(n) is the coefficient of x^0 in prod(k=1, 2*n, x+2*k-2*n-1). - Benoit Cloitre and Michael Somos, Nov 22 2002
-arccos(x) + Pi/2 = x + x^3/3! + 9*x^5/5! + 225*x^7/7! + 11205*x^9/9! + ... - Tom Copeland, Oct 23 2008
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (4*k^2+4*k+1)/(1-x/(x - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(V(i+1,j), 1 <= i,j <= n), where V(n,k) are central factorial numbers of the second kind with odd indices. - Mircea Merca, Apr 04 2013
a(n) = (1+x^2)^(n+1/2) * (d/dx)^(2*n) (1+x^2)^(n-1/2). See Tao link. - Robert Israel, Jun 04 2015
a(n) = 4^n * gamma(n + 1/2)^2 / Pi. - Daniel Suteu, Jan 06 2017
0 = a(n)*(+384*a(n+2) - 60*a(n+3) + a(n+4)) + a(n+1)*(-36*a(n+2) - 4*a(n+3)) + a(n+2)*(+3*a(n+2)) and a(n) = 1/a(-n) for all n in Z. - Michael Somos, Jan 06 2017
From Robert FERREOL, Jul 30 2020: (Start)
a(n) = ((2*n)!/4^n)*binomial(2*n,n).
a(n) = (2*n-1)!*Sum_{k=0..n-1} a(k)/(2*k)!, n >= 1.
a(n) = A184877(2*n-1) for n>=1. (End)
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + L_0(1)*Pi/2, where L is the modified Struve function (see A197037).
Sum_{n>=0} (-1)^n/a(n) = 1 - H_0(1)*Pi/2, where H is the Struve function. (End)

Extensions

Incorrect formula deleted by N. J. A. Sloane, Jul 03 2009

A177145 Expansion of e.g.f. arcsin(x).

Original entry on oeis.org

1, 0, 1, 0, 9, 0, 225, 0, 11025, 0, 893025, 0, 108056025, 0, 18261468225, 0, 4108830350625, 0, 1187451971330625, 0, 428670161650355625, 0, 189043541287806830625, 0, 100004033341249813400625, 0, 62502520838281133375390625, 0, 45564337691106946230659765625, 0
Offset: 1

Views

Author

Michel Lagneau, May 03 2010

Keywords

Comments

A001818 interspersed with zeros. - Joerg Arndt, Aug 31 2013
a(n) is the number of permutations of n-1 where all cycles have even length. For example, a(5)=9 and the permutations of 4 elements with only even cycles are (1,2)(3,4); (1,3)(2,4); (1,4)(2,3); (1,2,3,4); (1,2,4,3); (1,3,2,4); (1,3,4,2); (1,4,2,3); (1,4,3,2).
a(n) is the number of permutations on n - 1 elements where there are no cycles of even length and an even number of cycles of odd length. - N. Sato, Aug 29 2013

Examples

			1 is in the sequence because, for k=1, f'(x) = 1/sqrt(1-x^2), and f'(0) = 1.
G.f. = x + x^3 + 9*x^5 + 225*x^7 + 11025*x^9 + 893025*x^11 + ...
		

References

  • L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.

Crossrefs

Alternate terms are A001818. - N. Sato, May 13 2010
Cf. A087137.

Programs

  • Maple
    n0:= 30: T:=array(1..n0+1): f:=x->arcsin(x):for n from 1 to n0 do:T[n]:=(D(f)(0)):f:=D(f):od: print(T):
  • Mathematica
    a[ n_] := If[ n < 1, 0, If[ EvenQ[n], 0, (n - 2)!!^2]]; (* Michael Somos, Oct 07 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ ArcSin[x], {x, 0, n}]]; (* Michael Somos, Oct 07 2013 *)
  • PARI
    Vec( serlaplace( sqrt( 1/(1-x^2) + O(x^55) ) ) )
    
  • PARI
    {a(n) = if( n<2, n==1, (n-2)^2 * a(n-2))}; /* Michael Somos, Oct 07 2013 */
    
  • PARI
    a(n) = if( n<0, 0, n! * polcoeff( asin(x + x * O(x^n)), n)); /* Michael Somos, Oct 07 2013 */

Formula

E.g.f.: arcsin(x).
G.f.: Q(0)*x^2/(1+x) + x/(1+x), where Q(k) = 1 + (2*k + 1)^2 * x * (1 + x * Q(k+1)); - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Oct 07 2013]
E.g.f of a(n+1), n >= 0, is 1/sqrt(1 - x^2). - N. Sato, Aug 29 2013
If n is odd, a(n) ~ 2*n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 05 2013
E.g.f.: arcsin(x) = x + x^3/(T(0)-x^2), where T(k) = 4*k^2*(1+x^2) + 2*k*(5+2*x^2) +6 + x^2 - 2*x^2*(k+1)*(2*k+3)^3/T(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
a(n) = (n-1)! - A087137(n-1). - Anton Zakharov, Oct 18 2016
From Peter Bala, Aug 09 2024: (Start)
a(2*n+1) = (2*n - 1)!!^2 = A001147(n)^2.
a(n) = (n - 2)^2 * a(n-2) with a(1) = 1 and a(2) = 0. (End)

A089004 Number of partitions of an n-element set that have at least one odd block.

Original entry on oeis.org

1, 1, 5, 11, 52, 172, 877, 3761, 21147, 109419, 678570, 4063248, 27644437, 186525861, 1382958545, 10323844183, 82864869804, 675378319788, 5832742205057, 51386368744773, 474869816156751, 4486977535640087
Offset: 1

Views

Author

Vladeta Jovovic, Nov 02 2003

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
           add(multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1,
           max(t, `if`(j=0, 0, irem(i, 2)))), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Cosh[x]-1](Exp[Sinh[x]]-1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 04 2018 *)

Formula

E.g.f.: exp(cosh(x)-1)*(exp(sinh(x))-1).
Showing 1-3 of 3 results.