A125077
#4 in an infinite set of generalized Pascal's triangles with trigonometric properties.
Original entry on oeis.org
1, 1, 3, 1, 4, 11, 1, 7, 15, 41, 1, 8, 38, 56, 153, 1, 11, 46, 186, 209, 571, 1, 12, 81, 232, 859, 780, 2131, 1, 15, 93, 499, 1091, 3821, 7953, 1, 16, 140, 592, 2774, 4912, 16556, 10864, 29681, 1, 19, 156, 1044, 3366
Offset: 1
First few rows of the triangle are:
1;
1, 3;
1, 4, 11;
1, 7, 15, 41;
1, 8, 38, 56, 153;
1, 11, 46, 186, 209, 571;
1, 12, 81, 232, 859, 780, 2131;
...
The upward-sloping diagonal (1, 11, 38, 41) relates to the heptagon and in the form x^3 - 11x^2 + 38x - 41 has a root 5.24697960... = 4 + 2*cos(2*Pi/7). The corresponding matrix is [3, 1, 0; 1, 4, 1; 0, 1, 4]. The next upward-sloping diagonal relates to the octagon, with a characteristic polynomial x^3 - 12x^2 + 46x - 56 and a root 5.414213562... = 4 + 2*cos(2*Pi/8). The corresponding matrix is [4, 1, 0; 1, 4, 1; 0, 1, 4].
A126124
Triangle, matrix inverse of A124733, companion to A123965.
Original entry on oeis.org
1, -2, 1, 5, -5, 1, -13, 19, -8, 1, 34, -65, 42, -11, 1, -89, 210, -183, 74, -14, 1, 233, -654, 717, -394, 115, -17, 1, -610, 1985, -2622, 1825, -725, 165, -20, 1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1
Offset: 1
First few rows of the triangle are:
1;
-2, 1;
5, -5, 1;
-13, 19, -8, 1;
34, -65, 42, -11, 1;
-89, 210, -183, 74, -14, 1;
...
Triangle (n >= 0 and 0 <= k <= n) [0,-2,-1/2,-1/2,0,0,0,0,0,...] DELTA [1,0,1/2,-1/2,0,0,0,0,0,...] begins:
1;
0, 1;
0, -2, 1;
0, 5, -5, 1;
0, -13, 19, -8, 1;
0, 34, -65, 42, -11, 1;
0, -89, 210, -183, 74, -14, 1;
0, 233, -654, 717, -394, 115, -17, 1;
A140827
Interleave denominators and numerators of convergents to sqrt(3).
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 11, 15, 26, 41, 56, 97, 153, 209, 362, 571, 780, 1351, 2131, 2911, 5042, 7953, 10864, 18817, 29681, 40545, 70226, 110771, 151316, 262087, 413403, 564719, 978122, 1542841, 2107560, 3650401, 5757961, 7865521, 13623482, 21489003, 29354524, 50843527, 80198051, 109552575
Offset: 0
(1+r)^(2+12*q)=(-1)^q*(a(1+18*q)*(1+r^2)+a(2+18*q)*r).
Here we write N = [d(k)d(k-1)...d(0)] for the 3-bin expansion of N.
0=[0], 1 =[1], 2=[10], 3=[100], 4=[1000], 5=[1001], 6=[1010], 7=[10000], 8=[10001], 9=[10010], 10=[10100], 11=[100000]. - _Michel Dekking_, Mar 11 2020
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Demontigny et al., Generalizing Zeckendorf's Theorem to f-decompositions, Journal of Number Theory 141, 135-158 (2014).
- Peter H. van der Kamp, Global classification of two-component approximately integrable evolution equations, arXiv:0710.2233 [nlin.SI], 2007-2008.
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997), 122-126.
- Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-1).
-
N:=100: a[0]:=1: a[1]:=1: for i from 2 to N do if i mod 3 = 1 then a[i]:=a[i-1]+a[i-3] else a[i]:=a[i-1]+a[i-2] fi od:
-
idnc[n_]:=Module[{cvrgts=Convergents[Sqrt[3],n],num,den},num=Take[ Numerator[ cvrgts],{2,-1,2}];den=Denominator[cvrgts]; Riffle[den, num,3]]; idnc[30] (* Harvey P. Dale, Mar 17 2012 *)
A209760
Triangle of coefficients of polynomials v(n,x) jointly generated with A209759; see the Formula section.
Original entry on oeis.org
1, 1, 3, 1, 3, 8, 1, 3, 11, 21, 1, 3, 11, 38, 55, 1, 3, 11, 41, 124, 144, 1, 3, 11, 41, 150, 389, 377, 1, 3, 11, 41, 153, 533, 1187, 987, 1, 3, 11, 41, 153, 568, 1838, 3549, 2584, 1, 3, 11, 41, 153, 571, 2084, 6168, 10447, 6765, 1, 3, 11, 41, 153, 571, 2128
Offset: 1
First five rows:
1
1...3
1...3...8
1...3...11...21
1...3...11...38...55
First three polynomials v(n,x): 1, 1 + 3x , 1 + 3x + 8x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209759 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209760 *)
A210563
Triangle of coefficients of polynomials u(n,x) jointly generated with A210564; see the Formula section.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 1, 3, 10, 13, 1, 3, 11, 32, 34, 1, 3, 11, 40, 99, 89, 1, 3, 11, 41, 141, 299, 233, 1, 3, 11, 41, 152, 482, 887, 610, 1, 3, 11, 41, 153, 556, 1604, 2595, 1597, 1, 3, 11, 41, 153, 570, 1998, 5217, 7508, 4181, 1, 3, 11, 41, 153, 571, 2113, 7042
Offset: 1
First five rows:
1
1...2
1...3...5
1...3...10...13
1...3...11...32...34
First three polynomials u(n,x): 1, 1 + 2x, 1 + 3x + 5x^2.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210563 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210564 *)
A237250
Values of x in the solutions to x^2 - 4xy + y^2 + 11 = 0, where 0 < x < y.
Original entry on oeis.org
2, 3, 5, 10, 18, 37, 67, 138, 250, 515, 933, 1922, 3482, 7173, 12995, 26770, 48498, 99907, 180997, 372858, 675490, 1391525, 2520963, 5193242, 9408362, 19381443, 35112485, 72332530, 131041578, 269948677, 489053827, 1007462178, 1825173730, 3759900035
Offset: 1
10 is in the sequence because (x, y) = (10, 37) is a solution to x^2 - 4xy + y^2 + 11 = 0.
A357115
T(n,m) is the numerator of the resistance between two nodes located at the end of a side of length n of a rectangular electric network of n*m quadratic meshes in which all edges are replaced by one-ohm resistors, where T(n,m) is a square array read by descending antidiagonals.
Original entry on oeis.org
3, 11, 4, 41, 5, 13, 153, 26, 267, 26, 571, 68, 181, 192, 149, 2131, 89, 10609, 1506, 1171, 138, 7953, 466, 25059, 251, 155927, 246, 375, 29681, 1220, 3869723, 13852, 759435, 77948, 75255, 668, 110771, 1597, 1334085, 781778, 109897, 1949020, 982871, 24995, 3523
Offset: 1
The array of resistances starts:
3/4, 11/15, 41/56, 153/209, ... A001835(n-1)/A001353(n-1)
4/3, 5/4, 26/21, 68/55, ...
13/7, 267/161, 181/112, 10609/6603, ...
26/11, 192/95, 1506/781, 251/132, ...
149/52, 1171/495, 155927/70616, 759435/352583, ...
138/41, 246/91, 77948/31529, 1949020/817991, ...
.
T(1,3)/A357116(1,3) = 41/56:
. _____ _____ _____
O--|__1__|--O--|__1__|--O--|__1__|--O-----O
| | | | |
| | | | | | | | |
|1| |1| |1| |1| 41/56 ohms
|_| |_| |_| |_| |
| _____ | _____ | _____ | |
O--|__1__|--O--|__1__|--O--|__1__|--O-----O
.
T(3,1)/A357116(3,1) = 13/7 T(2,2)/A357116(2,2) = 5/4
. _____ _____ _____
O--|__1__|--O-----O O--|__1__|--O--|__1__|--O-----O
| | | | | | |
| | | | | | | | | | | |
|1| |1| | |1| |1| |1| |
|_| |_| | |_| |_| |_| |
| _____ | | | _____ | _____ | |
O--|__1__|--O | O--|__1__|--O--|__1__|--O 5/4 ohms
| | | | | | |
| | | | 13/7 | | | | | | |
|1| |1| ohms |1| |1| |1| |
|_| |_| | |_| |_| |_| |
| _____ | | | _____ | _____ | |
O--|__1__|--O | O--|__1__|--O--|__1__|--O-----O
| | |
| | | | |
|1| |1| |
|_| |_| |
| _____ | |
O--|__1__|--O-----O
A357116 are the corresponding denominators.
A097947
Expansion of g.f. (2+7*x+2*x^2)/((x^2-1)*(1+4*x+x^2)).
Original entry on oeis.org
-2, 1, -6, 16, -62, 225, -842, 3136, -11706, 43681, -163022, 608400, -2270582, 8473921, -31625106, 118026496, -440480882, 1643897025, -6135107222, 22896531856, -85451020206, 318907548961, -1190179175642, 4441809153600, -16577057438762, 61866420601441, -230888624967006
Offset: 0
A100245
Triangle read by rows: T(n,k) is the number of k-matchings in the P_3 X P_n lattice graph.
Original entry on oeis.org
1, 1, 2, 1, 7, 11, 3, 1, 12, 44, 56, 18, 1, 17, 102, 267, 302, 123, 11, 1, 22, 185, 758, 1597, 1670, 757, 106, 1, 27, 293, 1654, 5256, 9503, 9401, 4603, 908, 41, 1, 32, 426, 3080, 13254, 35004, 56456, 53588, 27688, 6716, 540, 1, 37, 584, 5161, 28191, 99183
Offset: 0
T(2,2)=11 because in the P_3 X P_ 2 lattice graph with vertex set {O(0,0),A(1,0),B(1,1),C(1,2),D(0,2),E(0,1)} and edge set {OA,EB,DC,OE,ED,AB,BC} we have the following eleven 2-matchings: {OA,EB},{OA,DC},{EB,DC},{OA,ED},{OA,BC},{DC,OE},{DC,AB},{OE,AB},{OE,BC},{ED,AB} and {ED,BC}.
Triangle starts:
1;
1,2;
1,7,11,3;
1,12,44,56,18;
1,17,102,267,302,123,11;
- H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (26) and Table V).
-
G:=(1+t*z-t^3*z^2)*(1-2*t*z-t^3*z^2)/(1-(1+3*t)*z-t*(1+t)*(2+5*t)*z^2-t^2*(1+2*t)*(1-t)*z^3+t^4*(2+3*t+5*t^2)*z^4-t^6*(1-t)*z^5-t^9*z^6): Gser:=simplify(series(G,z=0,11)): P[0]:=1: for n from 1 to 8 do P[n]:=coeff(Gser,z^n) od:for n from 0 to 8 do seq(coeff(t*P[n],t^k),k=1..floor(3*n/2)+1) od; # yields sequence in triangular form
A123520
Number of vertical dominoes in all possible tilings of a 2n X 3 grid by dominoes.
Original entry on oeis.org
4, 28, 152, 744, 3436, 15284, 66224, 281424, 1178196, 4874444, 19973192, 81189688, 327817404, 1316035940, 5257118560, 20909651104, 82849544868, 327163551612, 1288036695544, 5057236343176, 19807689093644, 77408388584724
Offset: 1
a(1) = 4 because a 2 X 3 grid can be tiled in 3 ways with dominoes: 3 horizontal dominoes, 1 horizontal domino above two adjacent vertical dominoes and 1 horizontal domino below two adjacent vertical dominoes; these have altogether 4 vertical dominoes.
-
a:=n->sum(k*2^(k+1)*binomial(n+k,2*k),k=0..n): seq(a(n),n=1..24);
-
FullSimplify[Table[(2+Sqrt[3])^n*((1+Sqrt[3])*n+1/Sqrt[3])/3 + (2-Sqrt[3])^n*((1-Sqrt[3])*n-1/Sqrt[3])/3,{n,1,20}]] (* Vaclav Kotesovec, Nov 29 2012 *)
Table[Sum[2^(k + 1)*k*Binomial[n + k, 2 k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Oct 14 2017 *)
-
z='z+O('z^50); Vec(4*z*(1-z)/(1-4*z+z^2)^2) \\ G. C. Greubel, Oct 14 2017
Comments