A226349
Number of functions f:{1,2,...,n} -> {1,2,...,n} such that the 1 and the 2 are in the same component of the functional digraph representation of f.
Original entry on oeis.org
0, 0, 3, 20, 188, 2280, 33864, 595196, 12081600, 278122032, 7159299200, 203771364324, 6354217539072, 215429796291320, 7889813961243648, 310413633428119500, 13057068314325008384, 584737112800511959104, 27776659696045110558720, 1395009275793285886030772, 73854320834079368232960000
Offset: 0
a(3)=20 because there are 17 connected functions on [3] and (2,1,3), (1,1,3), (2,2,3) where the functions are represented by their values.
-
nn=18; t=Sum[n^(n-1)x^n/n!, {n,1,nn+2}]; Join[{0,0}, Range[0,nn]! CoefficientList[Series[D[D[Log[1/(1-t)], x], x]/(1-t), {x,0,nn}], x]]
a[ n_] := If[ n < 2, 0, With[ {m = n - 2}, With[ {t = 1 + Sum[k^k x^k/k!, {k, m + 2}]}, m! SeriesCoefficient[ D[ Log[ t], {x, 2}] t, {x, 0, m} ]]]] (* Michael Somos, Jun 04 2013 *)
-
{a(n) = local(A); if( n<2, 0, m = n-2; A = sum( k=0, m+2, k^k * x^k / k!, x^3 * O(x^m)); m! * polcoeff( log(A)'' * A, m))} /* Michael Somos, Jun 04 2013 */
A308458
Expansion of e.g.f. log(Sum_{k>=0} k^binomial(k,2) * x^k / k!).
Original entry on oeis.org
1, 1, 23, 3994, 9745169, 470126386536, 558542572785461515, 19342808645467142112096240, 22528399370853856386499346950471953, 999999999774716004550606847948627702867525440, 1890591424701781041871514584507296209311760279398415565711
Offset: 1
E.g.f.: x + x^2/2! + 23*x^3/3! + 3994*x^4/4! + 9745169*x^5/5! + 470126386536*x^6/6! + 558542572785461515*x^7/7! + ... .
A332236
E.g.f.: -log(2 - 1 / (1 + LambertW(-x))).
Original entry on oeis.org
1, 5, 41, 466, 6769, 119736, 2497585, 60037328, 1634619969, 49733223040, 1672657257721, 61636181886720, 2470033974057649, 106970912288285696, 4979259164362745025, 247940951411958163456, 13152705012933836446465, 740578125097986605678592, 44115815578591964641401289
Offset: 1
-
nmax = 19; CoefficientList[Series[-Log[2 - 1/(1 + LambertW[-x])], {x, 0, nmax}], x] Range[0, nmax]! // Rest
a[n_] := a[n] = n^n + (1/n) Sum[Binomial[n, k] (n - k)^(n - k) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 1, 19}]
A332237
E.g.f.: -log(1 + LambertW(-x) * (2 + LambertW(-x)) / 2).
Original entry on oeis.org
1, 2, 8, 49, 409, 4356, 56734, 877094, 15742521, 322454800, 7434673036, 190792267128, 5398552673617, 167087263076384, 5617979017621650, 203987454978218416, 7957053981454827601, 331920300203780633856, 14746208516909980554736, 695208730205550274544000
Offset: 1
-
nmax = 20; CoefficientList[Series[-Log[1 + LambertW[-x] (2 + LambertW[-x])/2], {x, 0, nmax}], x] Range[0, nmax]! // Rest
a[n_] := a[n] = n^(n - 2) + (1/n) Sum[Binomial[n, k] (n - k)^(n - k - 2) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 1, 20}]
A347993
a(n) = n! * Sum_{k=1..n} (-1)^(k+1) * n^(n-k) / (n-k)!.
Original entry on oeis.org
1, 2, 15, 136, 1645, 24336, 426979, 8658560, 199234809, 5128019200, 145969492471, 4552809182208, 154404454932325, 5656950010320896, 222655633595044875, 9369696305273798656, 419790650812640438641, 19950175280765680680960, 1002394352017754098219999, 53092232229227200348160000
Offset: 1
-
Table[n! Sum[(-1)^(k + 1) n^(n - k)/(n - k)!, {k, 1, n}], {n, 1, 20}]
nmax = 20; CoefficientList[Series[-LambertW[-x]/(1 - LambertW[-x]^2), {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = n! * sum(k=1, n, (-1)^(k+1)*n^(n-k)/(n-k)!); \\ Michel Marcus, Sep 23 2021
A134558
Array read by antidiagonals, a(n,k) = gamma(n+1,k)*e^k, where gamma(n,k) is the upper incomplete gamma function and e is the exponential constant 2.71828...
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 24, 16, 10, 4, 1, 120, 65, 38, 17, 5, 1, 720, 326, 168, 78, 26, 6, 1, 5040, 1957, 872, 393, 142, 37, 7, 1, 40320, 13700, 5296, 2208, 824, 236, 50, 8, 1, 362880, 109601, 37200, 13977, 5144, 1569, 366, 65, 9, 1, 3628800, 986410, 297856
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 10, 17, 26, 37, 50, ...
6, 16, 38, 78, 142, 236, 366, ...
24, 65, 168, 393, 824, 1569, 2760, ...
120, 326, 872, 2208, 5144, 10970, 21576, ...
720, 1957, 5296, 13977, 34960, 81445, 176112, ...
Cf. a(n, 0) =
A000142(n); a(n, 1) =
A000522(n); a(n, 2) =
A010842(n); a(n, 3) =
A053486(n); a(n, 4) =
A053487(n); a(n, 5) =
A080954(n); a(n, 6) =
A108869(n); a(1, k) =
A000027(k+1); a(2, k) =
A002522(k+1); a(n, n) =
A063170(n); a(n, n+1) =
A001865(n+1); a(n, n+2) =
A001863(n+2).
-
T[n_,k_] := Gamma[n+1, k]*E^k; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Jun 27 2020 *)
A211398
E.g.f.: Sum_{n>=0} log( Sum_{k>=0} (n+k)^k*x^k/k! )^n / n!.
Original entry on oeis.org
1, 2, 14, 153, 2262, 42120, 945823, 24870937, 749702348, 25490350284, 965219424913, 40287663094503, 1837912330721162, 90988147658574582, 4858595700832370019, 278371180944699911227, 17034913752075240500920, 1108950617553341656112312, 76523438074756638449399565
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 14*x^2/2! + 153*x^3/3! + 2262*x^4/4! + 42120*x^5/5! +...
such that
A(x) = 1 + log(F(x,1)) + log(F(x,2))^2/2! + log(F(x,3))^3/3! + log(F(x,4))^4/4! +...
where
F(x,n) = 1 + (n+1)*x + (n+2)^2*x^2/2! + (n+3)^3*x^3/3! + (n+4)^4*x^4/4! + (n+5)^5*x^5/5! +...+ (n+k)^k*x^k/k! +...
Also,
A(x) = 1 + G(x,1) + G(x,2)^2/2! + G(x,3)^3/3! + G(x,4)^4/4! +...+ G(x,n)^n/n! +...
where G(x,n) = log( (LambertW(-x)/(-x))^n / (1+LambertW(-x)) ):
G(x,n) = (n+1)*x + (2*n+3)*x^2/2! + (9*n+17)*x^3/3! + (64*n+142)*x^4/4! + (625*n+1569)*x^5/5! +...+ (k^(k-1)*n + A001865(k))*x^k/k! +...
Related expansion:
Sum_{n>=0} n^n*log(LambertW(-x)/(-x))^n/n! = 1/(1+LambertW(LambertW(-x)));
1/(1+LambertW(LambertW(-x))) = 1 + x + 6*x^2/2! + 60*x^3/3! + 836*x^4/4! +...
-
{a(n)=n!*polcoeff(sum(m=0,n,log(sum(k=0,n,(m+k)^k*x^k/k! +x*O(x^n)))^m/m!),n)}
for(n=0,20,print1(a(n),", "))
A219530
Number of functions f:{1,2,...,n}->{1,2,...,n} such that each component of f is a function on an interval of {1,2,...,n}.
Original entry on oeis.org
1, 1, 4, 24, 195, 2046, 26752, 422546, 7849611, 167781117, 4054557471, 109246333917, 3245641491658, 105366022410057, 3709933487122164, 140791348680766521, 5728108758307500165, 248696925989154108462, 11476424805495560002162, 560894026563924188981599, 28941826672247857117927894
Offset: 0
a(3)=24 because there are 27 functions f:{1,2,3}->{1,2,3} but three of these are not counted: 1->3 2->2 3->3; 1->3 2->2 3->1; 1->1 2->2 3->1.
-
nn=20; t= Sum[n^(n-1)x^n/n!, {n,1,nn}]; a=Range[0,nn]! CoefficientList[Series[Log[1/(1-t)], {x,0,nn}], x]; b=Sum[a[[i]]x^(i-1), {i,1,nn+1}]; CoefficientList[Series[1/(1-b), {x,0,nn}], x]
Comments