A317403
a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).
Original entry on oeis.org
1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Cf.
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A168561,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
-
[(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
-
Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
-
concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
A172249
Triangle, read by rows, given by [0,1/3,-1/3,0,0,0,0,0,0,0,...] DELTA [3,-1/3,1/3,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 3, 0, 1, 8, 0, 0, 6, 21, 0, 0, 1, 25, 55, 0, 0, 0, 9, 90, 144, 0, 0, 0, 1, 51, 300, 377, 0, 0, 0, 0, 12, 234, 954, 987, 0, 0, 0, 0, 1, 86, 951, 2939, 2584, 0, 0, 0, 0, 0, 15, 480, 3573, 8850, 6765, 0, 0, 0, 0, 0, 1, 130, 2305, 12707, 26195, 17711, 0, 0, 0, 0, 0, 0, 18, 855
Offset: 0
Triangle begins :
1,
0,3,
0,1,8,
0,0,6,21,
0,0,1,25,55,
0,0,0,9,90,144,
0,0,0,1,51,300,377,
0,0,0,0,12,234,954,987,
0,0,0,0,1,86,951,2939,2584,
0,0,0,0,0,15,480,3573,8850,6765,
0,0,0,0,0,1,130,2305,12707,26195,17711,
-
T(n,k):=2*sum((j*binomial(n+j,2*n-2*k+2*j)*binomial(n-k+j,j))/(n+j),j,1,n+k); /* Vladimir Kruchinin_, Oct 28 2020 */
A286986
Number of connected dominating sets in the n-antiprism graph.
Original entry on oeis.org
3, 15, 54, 175, 543, 1642, 4875, 14271, 41310, 118487, 337263, 953810, 2682579, 7508655, 20929158, 58121407, 160877055, 443993146, 1222110555, 3355879647, 9195143598, 25144855655, 68635721679, 187035899810, 508896450723, 1382653280847, 3751638404310
Offset: 1
-
Table[6 n ChebyshevU[n - 1, 3/2] + (1 - 2 n) LucasL[2 n], {n, 30}] (* Eric W. Weisstein, May 17 2017 *)
LinearRecurrence[{6, -11, 6, -1}, {3, 15, 54, 175}, 30] (* Eric W. Weisstein, May 17 2017 *)
Rest[CoefficientList[Series[(3*x - 3*x^2 - 3*x^3 - 2*x^4)/(1 - 6*x + 11*x^2 - 6*x^3 + x^4), {x,0,50}], x]] (* G. C. Greubel, May 17 2017 *)
-
x='x+O('x^50); Vec((3*x - 3*x^2 - 3*x^3 - 2*x^4)/(1 - 6*x + 11*x^2 - 6*x^3 + x^4)) \\ G. C. Greubel, May 17 2017
A317450
a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3).
Original entry on oeis.org
1, 1, -16, -2048, 1638400, 7247757312, -164995463643136, -18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, -271732164163901599116133024293512544256, -13717048991958695477963985711266803110069141504, 3074347100178259797134292590832254504315406543889629184
Offset: 1
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Pell Polynomial
Cf.
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
Comments