cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A002643 Numbers k such that (k^2 + k + 1)/19 is prime.

Original entry on oeis.org

7, 11, 26, 45, 83, 125, 140, 182, 197, 201, 216, 239, 258, 311, 330, 353, 444, 467, 482, 486, 524, 539, 558, 600, 752, 771, 843, 881, 885, 923, 980, 999, 1071, 1113, 1170, 1223, 1337, 1356, 1470, 1664, 1835, 1869, 1911, 1949, 1968, 2021, 2078, 2120, 2192
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Jon E. Schoenfield, May 06 2010

A055755 4n^2+1, 2n^2+1, 2n^2-1 are all prime.

Original entry on oeis.org

3, 42, 45, 102, 132, 153, 237, 297, 375, 468, 570, 990, 2085, 2478, 2712, 3240, 4743, 5382, 5517, 6828, 7962, 8970, 8982, 9033, 9570, 9612, 9747, 9813, 10692, 12363, 12453, 12468, 12750, 13902, 14763, 14925, 15750, 16365, 17118, 17688, 19527
Offset: 1

Views

Author

Harvey P. Dale, Jul 12 2000

Keywords

Examples

			42 is included because 4*42^2+1, 2*42^2+1, 2*42^2-1 are all prime numbers.
		

Crossrefs

Cf. A001912.

Programs

  • Maple
    with(numtheory): for n from 1 to 50000 do if isprime(4*n^2+1) and isprime(2*n^2+1) and isprime(2*n^2-1) then printf(`%d,`,n) fi: od:
  • Mathematica
    a={};Do[If[PrimeQ[4n^2+1] && PrimeQ[2n^2+1] && PrimeQ[2n^2-1], AppendTo[a,n]], {n,10000}]; a (* Peter J. C. Moses, Apr 02 2013 *)

Extensions

More terms from James Sellers, Jul 13 2000

A248887 Primes p of the form 4m^2+1 such that q=4p^2+1 and r=4q^2+1 are prime.

Original entry on oeis.org

677, 6635777, 28132417, 156400037, 234518597, 381655297, 386751557, 403849217, 820020497, 1215498497, 1298449157, 1539463697, 1580539537, 1839037457, 2072616677, 2774550277, 2969814017, 6147500837, 6194319617, 6703351877, 6937890437
Offset: 1

Views

Author

Zak Seidov, Mar 05 2015

Keywords

Comments

All terms == 7 mod 10. Subsequence of A121834.

Crossrefs

A293621 Numbers k such that (2*k)^2 + 1 and (2*k+2)^2 + 1 are both primes.

Original entry on oeis.org

1, 2, 7, 12, 27, 62, 102, 192, 232, 317, 322, 357, 547, 572, 587, 622, 637, 657, 687, 782, 807, 837, 842, 982, 1027, 1042, 1047, 1202, 1227, 1267, 1332, 1417, 1462, 1567, 1652, 1767, 1877, 1887, 2012, 2077, 2087, 2182, 2302, 2307, 2367, 2392, 2397, 2477, 2507
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2017

Keywords

Comments

Sierpiński proved that under Schinzel's hypothesis H this sequence is infinite. He gives the 24 terms below 10^3.
Sierpiński noted that the only triple of consecutive primes of the form (2n)^2 + 1 are for n = 1 (i.e., 1 and 2 are the only consecutive terms in this sequence), since every triple of consecutive terms contains at least one term which is divisible by 5.

Examples

			1 is in the sequence since (2*1)^2 + 1 = 5 and (2*1+2)^2 + 1 = 17 are both primes.
		

Crossrefs

Subsequence of A001912.

Programs

  • Mathematica
    Select[Range[10^4], AllTrue[{(2#)^2+1, (2#+2)^2+1}, PrimeQ] &]
  • PARI
    isok(n) = isprime((2*n)^2 + 1) && isprime((2*n+2)^2 + 1); \\ Michel Marcus, Oct 13 2017

Formula

a(n) = A096012(n)/2. - Amiram Eldar, Feb 24 2020

A002647 Sextan primes: p = (x^6 + y^6)/(x^2 + y^2).

Original entry on oeis.org

13, 61, 73, 193, 241, 541, 601, 1021, 1801, 1873, 1933, 2221, 3121, 3361, 4993, 5521, 6481, 8461, 9181, 9901, 10993, 11113, 12241, 12541, 13633, 14173, 17761, 20593, 21433, 21661, 21841, 23773, 26113, 27901, 28393, 29101, 34141, 41161, 49201
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Extensions

More terms from Klaus Brockhaus, Jun 03 2009

A006687 Duodecimal primes: p = (x^12 + y^12 )/(x^4 + y^4 ).

Original entry on oeis.org

241, 5521, 6481, 51361, 346561, 380881, 390001, 1678321, 4332721, 4654801, 5576881, 12707521, 39336721, 41432641, 42942001, 99990001, 167948881, 184970641, 197063761, 205598881
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A115449 Numbers n such that 4*n^5 - 1 is prime.

Original entry on oeis.org

1, 2, 3, 8, 12, 23, 27, 42, 68, 75, 86, 96, 113, 117, 125, 135, 140, 146, 168, 182, 185, 188, 191, 198, 233, 245, 255, 267, 281, 287, 297, 306, 311, 318, 327, 360, 362, 366, 377, 390, 392, 395, 408, 416, 423, 432, 447, 456, 465, 486, 488, 497, 516, 531, 555
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 08 2006

Keywords

Examples

			If n=96 then (4*n^5 - 1) = 32614907903 (prime).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], PrimeQ[4*#^5 - 1] &] (* Stefan Steinerberger, Mar 09 2006 *)
  • PARI
    for(i=1,2000,if(isprime(4*i^5-1),print1(i,","))) \\ Matthew Conroy, Mar 12 2006
    
  • PARI
    for(i=1,2000,if(isprime(4*i^5-1),print1(i,","))) \\ Matthew Conroy, Mar 12 2006

Extensions

More terms from Stefan Steinerberger, Zak Seidov and Matthew Conroy, Mar 12 2006
More terms from Matthew Conroy, Mar 12 2006

A116947 Numbers k such that 4*k^6 + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 7, 17, 20, 22, 28, 30, 40, 45, 67, 68, 70, 75, 82, 85, 87, 88, 95, 108, 123, 125, 140, 150, 153, 163, 172, 190, 197, 200, 210, 217, 220, 223, 232, 237, 248, 268, 270, 282, 283, 287, 303, 310, 320, 333, 340, 358, 367, 403, 405, 407, 423, 438, 445, 447
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 03 2006

Keywords

Examples

			If k=197 then (4*k^6 + 1) is a prime with 15 digits.
		

Crossrefs

Programs

Extensions

More terms from Stefan Steinerberger, Apr 06 2006

A248892 Primes p of the form 4m^2+1 such that q=4p^2+1, r=4q^2+1 and s=4r^2+1 are all prime.

Original entry on oeis.org

1565891838737, 1985917919077, 2060476510097, 5590084720897, 39623323626437, 94860314619877, 114027286862737, 115071875848337, 117140013119377, 136739205150917, 246382184192357, 254109295929637, 265883157493777, 340055949647237, 378534223873937
Offset: 1

Views

Author

Zak Seidov, Mar 05 2015

Keywords

Comments

Corresponding values of k: 625678,704613,717718,1182168,3147353,4869813,5339178,5363578,5411562,5846777,7848283,7970403,8152962,9220303,9727978.

Crossrefs

Subsequence of A248887. Cf. A001912, A121326, A121834, A248887.

Programs

  • Mathematica
    apQ[p_]:=Module[{q=4p^2+1,r},r=4q^2+1;AllTrue[{p,q,r,4r^2+1},PrimeQ]]; Select[ 4*Range[ 10^7]^2+1,apQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 28 2019 *)

A274779 Numbers whose square is the sum of two positive triangular numbers in exactly one way.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 12, 13, 18, 20, 27, 28, 33, 37, 42, 45, 47, 55, 58, 60, 62, 63, 65, 67, 73, 75, 78, 80, 85, 88, 90, 92, 102, 103, 105, 112, 115, 118, 120, 125, 128, 130, 132, 135, 140, 142, 150, 153, 157, 163, 170, 175, 192, 193, 198, 200, 203, 210, 215, 218, 220, 222
Offset: 1

Views

Author

Altug Alkan, Jul 06 2016

Keywords

Comments

Obviously, A000217(n) + A000217(n+1) = n*(n+1)/2 + (n+1)*(n+2)/2 = (n+1)^2. So every square that is greater than 1 is the sum of two positive consecutive triangular numbers. This sequence focuses on the squares that have only this trivial solution.
For a related comment, see comments section of A001912.

Examples

			3 is a term because 3^2 is the sum of two positive triangular numbers in exactly 1 way that is: 3^2 = 3 + 6.
		

Crossrefs

Programs

  • Mathematica
    nR[n_]:= (SquaresR[2, n]+Plus@@ Pick[{-4, 4}, IntegerQ/@ Sqrt[{n, n/2}]])/8 ; nTr[n_] := nR[8*n + 2] - Boole@ IntegerQ@ Sqrt[8*n + 1]; Select[Range[250], nTr[#^2]==1 &] (* Giovanni Resta, Jul 08 2016 *)
Previous Showing 31-40 of 43 results. Next