A104797
Triangle T(n,k) = Fib(n-k+4)-n-k-3, n>=1, 0<=k
Original entry on oeis.org
1, 3, 1, 7, 3, 1, 14, 7, 3, 1, 26, 14, 7, 3, 1, 46, 26, 14, 7, 3, 1, 79, 46, 26, 14, 7, 3, 1, 133, 79, 46, 26, 14, 7, 3, 1, 221, 133, 79, 46, 26, 14, 7, 3, 1, 364, 221, 133, 79, 46, 26, 14, 7, 3, 1, 596, 364, 221, 133, 79, 46, 26, 14, 7, 3, 1, 972, 596, 364, 221, 133, 79, 46, 26
Offset: 1
First few rows of the triangle are:
1;
3, 1;
7, 3, 1;
14, 7, 3, 1;
26, 14, 7, 3, 1;
46, 26, 14, 7, 3, 1;
...
A119997
Sum of all matrix elements of n X n matrix M[i,j] = (-1)^(i+j)*Fibonacci[i+j-1].
Original entry on oeis.org
1, 1, 4, 5, 17, 32, 97, 225, 628, 1573, 4225, 10880, 28769, 74849, 196708, 513765, 1347025, 3523360, 9229441, 24154625, 63251156, 165571781, 433507969, 1134881280, 2971250497, 7778684737, 20365103812, 53316141125, 139584105233, 365434903328, 956722661665
Offset: 1
Matrix begins:
1 -1 2 -3 5
-1 2 -3 5 -8
2 -3 5 -8 13
-3 5 -8 13 -21
5 -8 13 -21 34
-
Table[Sum[Sum[(-1)^(i+j)*Fibonacci[i+j-1],{i,1,n}],{j,1,n}],{n,1,50}]
-
a(n) = sum(i=1, n, sum(j=1, n, (-1)^(i+j)*fibonacci(i+j-1))) \\ Colin Barker, Mar 26 2015
-
Vec(-x*(x^3+2*x-1)/((x-1)*(x^2-3*x+1)*(x^2-x-1)) + O(x^100)) \\ Colin Barker, Mar 26 2015
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 6, 3, 1, 5, 10, 7, 3, 1, 6, 15, 14, 7, 3, 1, 7, 21, 25, 15, 7, 3, 1, 8, 28, 41, 30, 15, 7, 3, 1, 9, 36, 63, 56, 31, 15, 7, 3, 1, 10, 45, 92, 98, 62, 31, 15, 7, 3, 1
Offset: 0
First few rows of the triangle:
1;
2, 1;
3, 3, 1;
4, 6, 3, 1;
5, 10, 7, 3, 1;
6, 15, 14, 7, 3, 1;
7, 21, 25, 15, 7, 3, 1;
...
A136338
Primes in the array A136431 that are not Fibonacci numbers.
Original entry on oeis.org
7, 11, 29, 37, 41, 67, 79, 97, 137, 191, 211, 277, 379, 631, 709, 821, 947, 967, 991, 1129, 1327, 1597, 1831, 2017, 2081, 2267, 2347, 2557, 2683, 2851, 2927, 3571, 3917, 4561, 4657, 4951, 5051, 5779, 6217, 6329, 6763, 8273, 8647, 8779, 9181, 9871, 10093
Offset: 1
k=1: primes in A000071 = {A000071(4) = 7}, no more through n = 1000.
k=2: primes in A001924 = {A001924(3) = 7, A001924(7) = 79, A001924(25) = 514201, ...}
k=3: primes in A014162 = {A014162(3) = 11, A014162(6) = 97, A014162(16) = 17519}, no more through n = 30.
k=4: primes in A014166 = {A014166(4) = 41, A014166(13) = 10093, A014166(14) = 16703}
k=5: primes in A053739 = {A053739(7) = 709, A053739(10) = 8273, A053739(11) = 14323}, no more through n = 27.
k=6: primes in A053295 = {A053295(3) = 29, A053295(8) = 2683, 23945893(24) = 23945893}, no more through n = 27.
k=7: primes in A053296 = {A053296(3) = 37, A053296(6) = 967, A053296(7) = 2267, A053296(12) = 127921, A053296(13) = 226007}, no more through n = 27.
-
A136431 := proc(k,n) local x ; coeftayl(x/(1-x-x^2)/(1-x)^k,x=0,n) ; end: A136338 := proc(amax) local a,k,n,a136431; a := [] ; for k from 1 do if A136431(k,3) > amax then break ; fi ; for n from 3 do a136431 := A136431(k,n) ; if a136431 > amax then break ; fi ; if isprime(a136431) and not a136431 in a then a := [op(a),a136431] ; fi ; od: od: sort(a) ; end: A136338(20000) ; # R. J. Mathar, Apr 21 2008
-
partsumfib(N,s=[],P=[])={ for( n=1+#s,N, s=concat(s,n+1); forstep( i=n,1,-1, isprime( s[i]+= if( i>1, s[i-1], fibonacci(n+2) ) ) & P=setunion(P,[s[i]]) ); print(s); );vecsort(eval(P))} \\ M. F. Hasler
A141289
Triangle read by rows, n-th row = (n-2)-th row appended to the beginning of (n-1)-th row, + n.
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5, 1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5, 6, 7
Offset: 1
First few rows of the triangle are:
1;
1, 2;
1, 1, 2, 3;
1, 2, 1, 1, 2, 3, 4;
1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5;
1, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5, 6;
...
Row 4 = (1, 2, 1, 1, 2, 3, 4) = (row 2 appended to row 3, + 4); = (1, 2) appended to (1, 1, 2, 3), then 4.
Original entry on oeis.org
1, 1, 2, 48, 414720, 309586821120000, 62298599877271470735360000000000, 221419738218975714643056286355472083897548800000000000000000000, 30963454718960054822969246779894642673092903344400531870724683866888280945459200000000000000000000000000000000000
Offset: 1
-
lst={};p0=p1=p2=p3=1;Do[p0*=a[n];p1*=p0;p2*=p1;p3*=p2;AppendTo[lst,p3],{n,1,2*3!}];lst
A210675
a(n)=a(n-1)+a(n-2)+n+4, a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 7, 15, 30, 54, 94, 159, 265, 437, 716, 1168, 1900, 3085, 5003, 8107, 13130, 21258, 34410, 55691, 90125, 145841, 235992, 381860, 617880, 999769, 1617679, 2617479, 4235190, 6852702, 11087926, 17940663, 29028625, 46969325, 75997988, 122967352, 198965380
Offset: 0
Cf.
A210673: a(n)=a(n-1)+a(n-2)+n-4, a(0)=0,a(1)=1.
Cf.
A066982: a(n)=a(n-1)+a(n-2)+n-2, a(0)=0,a(1)=1 (except the first term).
Cf.
A104161: a(n)=a(n-1)+a(n-2)+n-1, a(0)=0,a(1)=1.
Cf.
A001924: a(n)=a(n-1)+a(n-2)+n, a(0)=0,a(1)=1.
Cf.
A192760: a(n)=a(n-1)+a(n-2)+n+1, a(0)=0,a(1)=1.
Cf.
A192761: a(n)=a(n-1)+a(n-2)+n+2, a(0)=0,a(1)=1.
Cf.
A192762: a(n)=a(n-1)+a(n-2)+n+3, a(0)=0,a(1)=1.
A210678
a(n) = a(n-1)+a(n-2)+n+2, a(0)=a(1)=1.
Original entry on oeis.org
1, 1, 6, 12, 24, 43, 75, 127, 212, 350, 574, 937, 1525, 2477, 4018, 6512, 10548, 17079, 27647, 44747, 72416, 117186, 189626, 306837, 496489, 803353, 1299870, 2103252, 3403152, 5506435, 8909619, 14416087, 23325740, 37741862, 61067638, 98809537, 159877213, 258686789, 418564042
Offset: 0
Cf.
A081659: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=1 (except first 2 terms and sign).
Cf.
A001924: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=1 (except first 4 terms).
Cf.
A000126: a(n)=a(n-1)+a(n-2)+n-2, a(0)=a(1)=1 (except first term).
Cf.
A066982: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=1.
Cf.
A030119: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=1.
Cf.
A210677: a(n)=a(n-1)+a(n-2)+n+1, a(0)=a(1)=1.
-
LinearRecurrence[{3,-2,-1,1},{1,1,6,12},40] (* Harvey P. Dale, Dec 10 2014 *)
nxt[{n_,a_,b_}]:={n+1,b,a+b+n+3}; NestList[nxt,{1,1,1},40][[;;,2]] (* Harvey P. Dale, Mar 19 2023 *)
A247285
Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n (n>=1) having k (0<=k<=n-1) upper interactions.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 14, 1, 1, 9, 36, 59, 26, 1, 1, 11, 58, 150, 162, 46, 1, 1, 13, 85, 300, 543, 408, 79, 1, 1, 15, 117, 523, 1335, 1771, 966, 133, 1, 1, 17, 154, 833, 2747, 5303, 5335, 2184, 221, 1, 1, 19, 196, 1244, 5031, 12792, 19272, 15099, 4767, 364, 1
Offset: 1
Row 3 is 1,3,1. Indeed, the number of upper interactions in uuuddd, uududd, uuddud, uduudd, and ududud are 0, 1, 1, 1, and 2, respectively.
Triangle starts:
1;
1,1;
1,3,1;
1,5,7,1;
1,7,19,14,1;
1,9,36,59,26,1;
- Alois P. Heinz, Rows n = 1..141, flattened
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- Y. Le Borgne, Counting upper interactions in Dyck paths, Sem. Lotharingien de Combinatoire, 54, 2006, Article B54f.
-
q := u*t: s := ((1+t-2*q-sqrt((1-t)*(1-t-4*q+4*q^2)))*(1/2))/(t*(1-q)): Q := proc (x, n) options operator, arrow: product(1-q^k*x, k = 0 .. n-1) end proc: A := -t*add(((q-t)*s/(1-q))^n*q^(binomial(n+2, 2)-1)/(Q(q, n)*Q(q*t*s^2, n)), n = 0 .. 15)/add(((q-t)*s/(1-q))^n*q^binomial(n+2, 2)*(1-t*q^n*s)/(Q(q, n)*Q(q*t*s^2, n)*(1-q^n*s)*(1-q^(n+1)*s)), n = 0 .. 15): Aser := simplify(series(A, t = 0, 22)): for n to 16 do P[n] := sort(coeff(Aser, t, n)) end do: for n to 13 do seq(coeff(P[n], u, j), j = 0 .. n-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t, c) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y+1, false, max(0, c-1))*
`if`(c>0, z, 1)+b(x-1, y-1, true, 1+`if`(t, c, 0)))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..n-1))(b(2*n, 0, false, 0)):
seq(T(n), n=1..15); # Alois P. Heinz, Sep 11 2014
-
b[x_, y_, t_, c_] := b [x, y, t, c] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, False, Max[0, c-1]]*If[c>0, z, 1] + b[x-1, y-1, True, 1 + If[t, c, 0] ] ] ] ]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, n-1}]][b[2*n, 0, False, 0]]; Table[T[n], {n, 1, 25}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
A259454
Triangle T(n,k) (0 <= k <= n) read by rows, arising from the study of rook polynomials.
Original entry on oeis.org
1, 1, 3, 1, 6, 7, 1, 9, 22, 14, 1, 12, 46, 64, 26, 1, 15, 79, 177, 162, 46, 1, 18, 121, 380, 571, 374, 79, 1, 21, 172, 700, 1496, 1632, 809, 133, 1, 24, 232, 1164, 3261, 5116, 4270, 1668, 221, 1, 27, 301, 1799, 6271, 13013, 15754, 10446, 3316, 364
Offset: 0
Triangle T(n,k) begins:
1;
1, 3;
1, 6, 7;
1, 9, 22, 14;
1, 12, 46, 64, 26;
1, 15, 79, 177, 162, 46;
1, 18, 121, 380, 571, 374, 79;
1, 21, 172, 700, 1496, 1632, 809, 133;
1, 24, 232, 1164, 3261, 5116, 4270, 1668, 221;
G.f. = 1 + (1 + 3*t)*u + (1 + 6*t + 7*t^2)*u^2 + ...
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
T(n-1, k) +2*T(n-1, k-1) +T(n-2, k-1)
-T(n-3, k-3) +`if`(n=k, 1, 0))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jul 02 2015
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k] + 2*T[n-1, k-1] + T[n-2, k - 1] - T[n-3, k-3] + Boole[n == k]; T[, ] = 0; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2016 *)
-
{T(n, k) = polcoeff( polcoeff( 1 / ((1 - y*x) * (1 - (1 + 2*y)*x - y*x^2 + y^3*x^3)) + x * O(x^n), n), k)}; /* Michael Somos, Aug 26 2015 */
Comments