cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 68 results. Next

A296068 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 4, 0, 1, 5, 14, 22, 18, 6, 0, 1, 6, 20, 40, 48, 32, 9, 0, 1, 7, 27, 65, 101, 99, 55, 12, 0, 1, 8, 35, 98, 185, 236, 194, 90, 16, 0, 1, 9, 44, 140, 309, 481, 518, 363, 144, 22, 0, 1, 10, 54, 192, 483, 882, 1165, 1080, 657, 226, 29, 0, 1, 11, 65, 255, 718, 1498, 2330, 2665, 2162, 1155, 346, 38, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 8)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 59*k + 18)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 215*k^2 + 330*k + 144)*x^5 + ...
Square array begins:
1,  1,   1,   1,    1,    1,  ...
0,  1,   2,   3,    4,    5,  ...
0,  2,   5,   9,   14,   20,  ...
0,  3,  10,  22,   40,   65,  ...
0,  4,  18,  48,  101,  185,  ...
0,  6,  32,  99,  236,  481,  ...
		

Crossrefs

Main diagonal gives A296044.
Antidiagonal sums give A302020.
Cf. A296067.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i))/(1 - x^(2 i - 1)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Product[((1 - x^(4 i))/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[2^(-k/2) (EllipticTheta[2, 0, x]/(x^(1/8) EllipticTheta[2, Pi/4, Sqrt[x]]))^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.
G.f. of column k: Product_{j>=1} ((1 - x^(4*j))/(1 - x^j))^k.
G.f. of column k: 2^(-k/2)*(theta_2(0,x)/(x^(1/8)*theta_2(Pi/4,sqrt(x))))^k, where theta_() is the Jacobi theta function.

A339406 Number of partitions of n into an even number of parts that are not multiples of 4.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 5, 5, 10, 9, 16, 17, 29, 28, 44, 48, 73, 76, 110, 121, 172, 185, 253, 282, 381, 417, 549, 616, 802, 889, 1137, 1279, 1620, 1810, 2260, 2549, 3161, 3544, 4346, 4906, 5979, 6720, 8120, 9164, 11014, 12392, 14788, 16682, 19820, 22297, 26337, 29682, 34921, 39267
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(6) = 5 because we have [5, 1], [3, 3], [3, 1, 1, 1], [2, 2, 1, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
          b(n, i-1, t)+`if`(irem(i, 4)=0, 0, b(n-i, min(n-i, i), 1-t))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 53; CoefficientList[Series[(1/2) (Product[(1 - x^(4 k))/(1 - x^k), {k, 1, nmax}] + Product[(1 + x^(4 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 - x^(4*k)) / (1 - x^k) + Product_{k>=1} (1 + x^(4*k)) / (1 + x^k)).
a(n) = (A001935(n) + A261734(n)) / 2.

A339407 Number of partitions of n into an odd number of parts that are not multiples of 4.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 4, 7, 6, 13, 13, 21, 21, 36, 38, 57, 59, 90, 98, 137, 148, 210, 231, 310, 341, 459, 511, 664, 737, 957, 1073, 1357, 1518, 1918, 2156, 2673, 3002, 3712, 4182, 5100, 5737, 6976, 7866, 9460, 10652, 12777, 14402, 17126, 19284, 22867, 25761, 30340, 34139, 40099
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(6) = 4 because we have [6], [3, 2, 1], [2, 2, 2] and [2, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
          b(n, i-1, t)+`if`(irem(i, 4)=0, 0, b(n-i, min(n-i, i), 1-t))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 53; CoefficientList[Series[(1/2) (Product[(1 - x^(4 k))/(1 - x^k), {k, 1, nmax}] - Product[(1 + x^(4 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 - x^(4*k)) / (1 - x^k) - Product_{k>=1} (1 + x^(4*k)) / (1 + x^k)).
a(n) = (A001935(n) - A261734(n)) / 2.

A376853 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 1, 4, 9, 16, 28, 49, 84, 140, 228, 361, 560, 856, 1288, 1916, 2821, 4108, 5928, 8480, 12024, 16920, 23637, 32788, 45196, 61928, 84368, 114332, 154160, 206857, 276308, 367476, 486680, 641996, 843656, 1104592, 1441168, 1873965, 2428816, 3138132, 4042408, 5192132
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(sqrt(8*n*(log(r)^2 + polylog(2,r) - polylog(2,-r)))), where r = A192918 = 0.54368901269207636157... is the real root of the equation r*(1+r^2) = (1-r^2) and c = 0.0643033662740307713580663125340126524175...

A117274 Triangle read by rows: T(n,k) is the number of partitions of n with no even part repeated and having k 1's (n>=0, 0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 1, 1, 1, 0, 1, 3, 3, 2, 1, 1, 1, 0, 1, 4, 3, 3, 2, 1, 1, 1, 0, 1, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 9, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 12, 9, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 14, 12, 9, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0
Offset: 0

Views

Author

Emeric Deutsch, Mar 06 2006

Keywords

Comments

Row sums yield A001935. T(n,0)=A117275(n). T(n,k)=T(n-k,0)=A117275(n-k). Sum(k*T(n,k),k=0..n)=A117276(n).

Examples

			T(8,2)=3 because we have [6,1,1],[4,2,1,1] and [3,3,1,1].
		

Crossrefs

Programs

  • Maple
    g:=(1+x^2)*product((1+x^(2*k))/(1-x^(2*k-1)),k=2..50)/(1-t*x): gser:=simplify(series(g,x=0,23)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

Formula

G.f.=G(t,x)=(1+x^2)*product((1+x^(2k))/(1-x^(2k-1)), k=2..infinity)/(1-tx).

A117276 Number of 1's in all partitions of n with no even parts repeated.

Original entry on oeis.org

0, 1, 2, 4, 7, 11, 17, 26, 38, 54, 76, 105, 143, 193, 257, 339, 444, 576, 742, 950, 1208, 1528, 1923, 2407, 2999, 3721, 4597, 5657, 6937, 8476, 10322, 12532, 15168, 18306, 22034, 26450, 31672, 37835, 45091, 53619, 63625, 75341, 89037, 105023, 123647
Offset: 0

Views

Author

Emeric Deutsch, Mar 06 2006

Keywords

Comments

a(n)=Sum(k*A117274(n,k),k=0..n).

Examples

			a(5)=11 because the partitions of 5 with no even parts repeated are [5],[4,1],[3,2],[3,1,1],[2,1,1,1] and [1,1,1,1,1] and they have a total number 0+1+0+2+3+5=11 parts equal to 1.
		

Crossrefs

Programs

  • Maple
    g:=x*product((1+x^(2*j))/(1-x^(2*j-1)),j=1..35)/(1-x): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..47);
  • Mathematica
    nmax = 50; CoefficientList[Series[x/(1-x) * Product[(1+x^(2*k))/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)

Formula

G.f.: x*product((1+x^(2j))/(1-x^(2j-1)), j=1..infinity)/(1-x).
a(n) ~ exp(sqrt(n/2)*Pi) / (2^(5/4)*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 07 2016
G.f.: (x/(1 - x))*Product_{k>=1} (1 - x^(4*k))/(1 - x^k). - Ilya Gutkovskiy, May 15 2018

A226034 Expansion of f(-x)^6 / (chi(x) * phi(-x)^6) in powers of x where phi(), chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 11, 73, 368, 1552, 5755, 19337, 60054, 174801, 481760, 1266992, 3198963, 7791921, 18382187, 42139440, 94126547, 205343040, 438390320, 917501570, 1885269635, 3808353889, 7571955531, 14833349529, 28657374307, 54646711136, 102932171227, 191644299945
Offset: 0

Views

Author

Michael Somos, May 28 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 11*x + 73*x^2 + 368*x^3 + 1552*x^4 + 5755*x^5 + 19337*x^6 + 60054*x^7 + ...
q^19 + 11*q^43 + 73*q^67 + 368*q^91 + 1552*q^115 + 5755*q^139 + 19337*q^163 + ...
		

Crossrefs

Cf. A001935.

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[(1+x^k)^4 * (1-x^(3*k))^6 * (1-x^(4*k)) / (1-x^k)^7,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(-19/24)* eta[q^2]^4*eta[q^3]^6*eta[q^4]/eta[q]^11, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 15 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^6 * eta(x^4 + A) / eta(x + A)^11, n))}

Formula

Expansion of q^(-19/24) * eta(q^2)^4 * eta(q^3)^6 * eta(q^4) / eta(q)^11 in powers of q.
a(n) = 1/12 * A001935(9*n + 7).
a(n) ~ exp(3*Pi*sqrt(n/2)) / (2^(19/4) * 3^(5/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015

A293195 E.g.f.: Product_{m>0} (1+x^m+x^(2*m)/2!+x^(3*m)/3!).

Original entry on oeis.org

1, 1, 3, 13, 72, 500, 4020, 37380, 389760, 4546080, 58363200, 814968000, 12301027200, 200216016000, 3484710028800, 64639070496000, 1270187702784000, 26414731639296000, 578733086131200000, 13328586071184384000, 321801976039864320000, 8127599117746268160000
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2017

Keywords

Crossrefs

Column k=3 of A293135.
Cf. A001935.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)/j!, j=0..min(3, n/i))))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 02 2017

A332310 Number of compositions (ordered partitions) of n into distinct parts where no part is a multiple of 4.

Original entry on oeis.org

1, 1, 1, 3, 2, 3, 9, 5, 12, 17, 23, 43, 50, 55, 67, 111, 144, 273, 291, 377, 410, 689, 827, 961, 1860, 1663, 2647, 3573, 4610, 4683, 6753, 8465, 11232, 16835, 19985, 24073, 29258, 40411, 51367, 58431, 72084, 99807, 119409, 176387, 199922, 250841, 290123
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2020

Keywords

Examples

			a(7) = 5 because we have [7], [6, 1], [5, 2], [2, 5] and [1, 6].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n == 0, p!, Sum[b[n - i j, i - 1, p + j], {j, 0, Min[Mod[i, 4], 1, n/i]}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 55] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

A344319 Number of partitions of n into consecutive parts not divisible by 4.

Original entry on oeis.org

1, 1, 2, 0, 2, 2, 1, 1, 1, 2, 3, 0, 2, 2, 1, 2, 2, 2, 2, 0, 3, 2, 2, 2, 1, 2, 3, 0, 2, 3, 1, 3, 2, 2, 2, 0, 4, 2, 1, 2, 1, 3, 5, 0, 2, 2, 1, 3, 1, 3, 3, 0, 4, 3, 1, 2, 2, 2, 3, 0, 3, 2, 2, 4, 1, 3, 3, 0, 3, 4, 1, 2, 1, 2, 4, 0, 3, 3, 2, 4, 2, 2, 3, 0, 4, 2, 1, 2, 2, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2021

Keywords

Examples

			a(11) = 3 because we have [11], [6, 5] and [5, 3, 2, 1].
		

Crossrefs

Previous Showing 51-60 of 68 results. Next