cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A295831 Expansion of Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 19, 30, 47, 76, 118, 181, 277, 417, 624, 929, 1367, 2001, 2913, 4210, 6056, 8665, 12328, 17466, 24640, 34600, 48395, 67442, 93625, 129520, 178588, 245429, 336252, 459324, 625613, 849762, 1151150, 1555378, 2096332, 2818630, 3780903, 5060240, 6757633, 9005106, 11975265
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 44; CoefficientList[Series[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 44; CoefficientList[Series[Exp[Sum[x^k (1 - (-1)^k x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.
G.f.: exp(Sum_{k>=1} x^k*(1 - (-1)^k*x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3*(7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (12 * (7*Zeta(3))^(1/3)) - Pi^4 / (3024*Zeta(3)) - 1/24) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(11/8) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A296068 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 4, 0, 1, 5, 14, 22, 18, 6, 0, 1, 6, 20, 40, 48, 32, 9, 0, 1, 7, 27, 65, 101, 99, 55, 12, 0, 1, 8, 35, 98, 185, 236, 194, 90, 16, 0, 1, 9, 44, 140, 309, 481, 518, 363, 144, 22, 0, 1, 10, 54, 192, 483, 882, 1165, 1080, 657, 226, 29, 0, 1, 11, 65, 255, 718, 1498, 2330, 2665, 2162, 1155, 346, 38, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 8)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 59*k + 18)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 215*k^2 + 330*k + 144)*x^5 + ...
Square array begins:
1,  1,   1,   1,    1,    1,  ...
0,  1,   2,   3,    4,    5,  ...
0,  2,   5,   9,   14,   20,  ...
0,  3,  10,  22,   40,   65,  ...
0,  4,  18,  48,  101,  185,  ...
0,  6,  32,  99,  236,  481,  ...
		

Crossrefs

Main diagonal gives A296044.
Antidiagonal sums give A302020.
Cf. A296067.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i))/(1 - x^(2 i - 1)))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Product[((1 - x^(4 i))/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[2^(-k/2) (EllipticTheta[2, 0, x]/(x^(1/8) EllipticTheta[2, Pi/4, Sqrt[x]]))^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^(2*j))/(1 - x^(2*j-1)))^k.
G.f. of column k: Product_{j>=1} ((1 - x^(4*j))/(1 - x^j))^k.
G.f. of column k: 2^(-k/2)*(theta_2(0,x)/(x^(1/8)*theta_2(Pi/4,sqrt(x))))^k, where theta_() is the Jacobi theta function.

A319455 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^2.

Original entry on oeis.org

1, 2, 7, 14, 35, 66, 140, 252, 485, 840, 1512, 2534, 4347, 7084, 11705, 18622, 29862, 46522, 72779, 111310, 170534, 256586, 386101, 572488, 848050, 1240974, 1812979, 2621486, 3782669, 5410360, 7720237, 10932740, 15443120, 21669546, 30327570, 42196022, 58555543, 80832850
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2018

Keywords

Comments

Convolution inverse of A002171.
Self-convolution of A002513.
Convolution of A000041 and A029862.
Euler transform of period 2 sequence [2, 4, ...].

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(2*k)))^2,k=1..55),x=0,38): seq(coeff(a,x,n),n=0..37); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 37; CoefficientList[Series[Product[1/((1 - x^k)*(1 - x^(2*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^2])^2, {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[Exp[2 Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    seq(n)={Vec(exp(2*sum(k=1, n, (4*sigma(k) - sigma(2*k))*x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Sep 19 2018

Formula

G.f.: Product_{k>=1} (1 + x^k)^2/(1 - x^(2*k))^4.
G.f.: exp(2*Sum_{k>=1} (4*sigma(k) - sigma(2*k))*x^k/k).
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(13/4)*n^(7/4)). - Vaclav Kotesovec, Sep 14 2021

A210656 Expansion of psi(x^3) * phi(-x)^2 / phi(-x^2) in power of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, 36, 130, 412, 1176, 3105, 7712, 18192, 41098, 89476, 188592, 386322, 771528, 1506036, 2879688, 5403628, 9966408, 18092599, 32366288, 57117660, 99526362, 171378512, 291841464, 491812740, 820684904, 1356794820, 2223458146, 3613417008, 5825889936
Offset: 0

Views

Author

Michael Somos, Mar 27 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 8*x + 36*x^2 + 130*x^3 + 412*x^4 + 1176*x^5 + 3105*x^6 + 7712*x^7 + ...
q^3 + 8*q^7 + 36*q^11 + 130*q^15 + 412*q^19 + 1176*q^23 + 3105*q^27 + ...
		

Crossrefs

Cf. A001936.

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 - x^(2*k))^4 * (1 - x^(6*k))^2 / ((1 - x^k)^4 * (1 - x^(3*k)) * (1 - x^(4*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A)^4 * eta(x^3 + A) * eta(x^ 4 + A)) )^2, n))}

Formula

Expansion of q^(-3/4) * ( eta(q^2)^4 * eta(q^6)^2 / (eta(q)^4 * eta(q^3) * eta(q^ 4)) )^2 in powers of q.
Euler transform of period 12 sequence [ 8, 0, 10, 2, 8, -2, 8, 2, 10, 0, 8, 0, ...].
A001936(9*n + 2) - A001936(n) = 4 * a(3*n). A001936(9*n + 5) = 4 * a(3*n + 1). A001936(9*n + 8) = 4 * a(3*n + 2).
a(n) ~ exp(sqrt(3*n)*Pi) / (32*sqrt(2)*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A172259 Let CK(m) denote the complete elliptic integral of the first kind. a(n) is the n-th smallest integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.

Original entry on oeis.org

1, 2, 5, 14, 38, 101, 275, 746, 2026, 5507, 14969, 40689, 110604, 300652, 817255, 2221528, 6038739, 16414993, 44620576, 121291299, 329703934, 896228212, 2436200862, 6622280533, 18001224835, 48932402358, 133012060152, 361564266077, 982833574297, 2671618645410
Offset: 1

Views

Author

Michel Lagneau, Jan 30 2010

Keywords

Comments

F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt and the complete elliptic integral CK is defined by CK(k) = F(1,sqrt(1-k^2)). We calculate the values of CK(k) with k = 1/p, p = 1,2,3, ... and we propose a very interesting property: a(n+1)/a(n) tends toward e = 2.7182818... when n tends to infinity. For example, a(8) / a(7) = 2.718281581; a(9) / a(8) = 2.7182817562.

Examples

			a(3) = 38 because floor(CK(1/37)) = 4 and floor(CK(1/38)) = 5.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 575, Eq. 16.22.1 and 16.22.2.
  • M. Abramowitz and I. Stegun, "Elliptic Integrals", Chapter 17 of Handbook of Mathematical Functions. Dover Publications Inc., New York, 1046 p., (1965).
  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

Crossrefs

Programs

  • Maple
    a0:=1:for p from 1 to 1000 do:a:= evalf(EllipticCK(1/p)):if floor(a)=a0+1 then print(p):a0:=floor(a):else fi:od:

Formula

F(z,k) = Integral_{t=0..z} 1/(sqrt(1-t^2)*sqrt(1-k^2*t^2)) dt. CK is defined by CK(k) = F(1,sqrt(1-k^2)). a(n) is the n-th integer k such that floor(CK(1/k)) = floor(CK(1/(k-1))) + 1.
Previous Showing 21-25 of 25 results.