cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 259 results. Next

A003233 Numbers k such that A003231(A001950(k)) = A001950(A003231(k)).

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 51, 52, 54, 56, 57, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 72, 73, 75, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91
Offset: 1

Views

Author

Keywords

Comments

See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named r in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003233 n = a003233_list !! (n-1)
    a003233_list = [x | x <- [1..],
                        a003231 (a001950 x) == a001950 (a003231 x)]
    -- Reinhard Zumkeller, Oct 03 2014
    
  • Mathematica
    a3221[n_] := Floor[n(5 + Sqrt[5])/2];
    a1950[n_] := Floor[n(1 + Sqrt[5])^2/4];
    Select[Range[100], a3221[a1950[#]] == a1950[a3221[#]]&] (* Jean-François Alcover, Aug 04 2018 *)
  • PARI
    A001950(n) = floor(n*(sqrt(5)+3)/2);
    A003231(n) = floor(n*(sqrt(5)+5)/2);
    lista(nn) = { for(n=1, nn, if (A003231(A001950(n)) == A001950(A003231(n)), print1(n, ", ")));} \\ Michel Marcus, Feb 02 2014
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A003233_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k,count(max(1,startvalue)))
    A003233_list = list(islice(A003233_gen(),30)) # Chai Wah Wu, Sep 02 2022

Extensions

More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014

A047924 a(n) = B_{A_n+1}+1, where A_n = floor(n*phi) = A000201(n), B_n = floor(n*phi^2) = A001950(n) and phi is the golden ratio.

Original entry on oeis.org

3, 6, 11, 14, 19, 24, 27, 32, 35, 40, 45, 48, 53, 58, 61, 66, 69, 74, 79, 82, 87, 90, 95, 100, 103, 108, 113, 116, 121, 124, 129, 134, 137, 142, 147, 150, 155, 158, 163, 168, 171, 176, 179, 184, 189, 192, 197, 202, 205, 210, 213, 218, 223, 226, 231, 234, 239
Offset: 0

Views

Author

Keywords

Comments

2nd column of array in A038150.
Apart from the first term also the second column of A126714; see also A223025. - Casey Mongoven, Mar 11 2013

References

  • Clark Kimberling, Stolarsky interspersions, Ars Combinatoria 39 (1995), 129-138.

Crossrefs

Cf. A007066.

Programs

  • Maple
    A001950 := proc(n)
            local phi;
            phi := (1+sqrt(5))/2 ;
            floor(n*phi^2) ;
    end proc:
    A000201 := proc(n)
            local phi;
            phi := (1+sqrt(5))/2 ;
            floor(n*phi) ;
    end proc:
    A047924 := proc(n)
            1+A001950(1+A000201(n)) ;
    end proc: # R. J. Mathar, Mar 20 2013
  • Mathematica
    A[n_] := Floor[n*GoldenRatio]; B[n_] := Floor[n*GoldenRatio^2]; a[n_] := B[A[n]+1]+1; Table[a[n], {n, 0, 56}] (* Jean-François Alcover, Feb 11 2014 *)
  • Python
    from mpmath import *
    mp.dps=100
    import math
    def A(n): return int(math.floor(n*phi))
    def B(n): return int(math.floor(n*phi**2))
    def a(n): return B(A(n) + 1) + 1 # Indranil Ghosh, Apr 25 2017
    
  • Python
    from math import isqrt
    def A047924(n): return ((m:=(n+isqrt(5*n**2)>>1)+1)+isqrt(5*m**2)>>1)+m+1 # Chai Wah Wu, Aug 25 2022

Extensions

More terms from Naohiro Nomoto, Jun 08 2001
New description from Aviezri S. Fraenkel, Aug 03 2007

A179319 G.f.: WL(-x)*WU(x), where WL, WU are respectively the characteristic functions of the lower (A000201) and upper (A001950) Wythoff sequences.

Original entry on oeis.org

1, -1, 1, -2, 1, 0, 1, 1, 0, 0, 1, -1, 1, 1, 1, 2, -1, 1, 1, 0, 1, -1, 1, 1, 0, 0, 1, -1, 1, -2, 1, 0, 1, -1, 1, -2, 1, -3, 1, -1, 1, 0, 1, -1, 1, -2, 1, 0, 1, 1, 0, 0, 1, -1, 1, -2, 1, 0, 1, -1, 1, -2, 1, -3, 1, -1, 2, -2, 1, -3, 1, -4, 1, -2, 1, -1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2011

Keywords

Comments

Mentioned in a posting by Paul D. Hanna to the Sequence Fans Mailing List, Dec 28 2010.

Examples

			WL(x) = 1 + x + x^3 + x^4 + x^6 + x^8 + x^9 + x^11 + x^12 +...+ x^[n*phi] + ...
WU(x) = 1 + x^2 + x^5 + x^7 + x^10 + x^13 + x^15 + x^18 +...+ x^[n*(phi+1)] + ...
G.f.: WL(-x)*WU(x) = 1 - x + x^2 - 2*x^3 + x^4 + x^6 + x^7 + x^10 - x^11 + x^12 + x^13 + x^14 + 2*x^15 - x^16 +...+ a(n)*x^n +...
Positions of records for positive coefficients (A183555) in WL(-x)*WU(x) begin:
1: 0
2: 15
3: 159
4: 303
5: 2887
6: 5471
7: 51839
8: 98207
9: 930247
10: 1762287
...
Positions of records for negative coefficients (A183556) in WL(-x)*WU(x) begin:
-1: 1
-2: 3
-3: 37
-4: 71
-5: 681
-6: 1291
-7: 12237
-8: 23183
-9: 219601
-10: 416019
...
Now compare the above positions to A059973:
[1,1, 2,4, 9,17, 38,72, 161,305, 682,1292, 2889,5473, 12238,23184, 51841,98209, 219602,416020, 930249,1762289, ...].
		

Crossrefs

Formula

It appears that the records for positive integers occur at positions A059973(4n+1)-2 and A059973(4n+2)-2, while the records for negative integers occur at positions A059973(4n-1)-1 and A059973(4n)-1;
that is, the records seem to obey the following rule:
* a(A059973(4n+1)-2) = 2n-1 for n>1,
* a(A059973(4n+2)-2) = 2n for n>=1,
* a(A059973(4n-1)-1) = -(2n-1) for n>=1,
* a(A059973(4n)-1) = -(2n) for n>=1;
see A183555 and A183556.

Extensions

Formula, examples, and program added by Paul D. Hanna, Jan 07 2011

A283234 2*A001950.

Original entry on oeis.org

4, 10, 14, 20, 26, 30, 36, 40, 46, 52, 56, 62, 68, 72, 78, 82, 88, 94, 98, 104, 108, 114, 120, 124, 130, 136, 140, 146, 150, 156, 162, 166, 172, 178, 182, 188, 192, 198, 204, 208, 214, 218, 224, 230, 234, 240, 246, 250, 256, 260, 266, 272, 276, 282, 286, 292
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2017

Keywords

Comments

This is one of three sequences that partition the positive integers. In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint. Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked. Define b(n) and c(n) as the ranks of n/s and n/t. It is easy to prove that
a(n)=n+[ns/r]+[nt/r],
b(n)=n+[nr/s]+[nt/s],
c(n)=n+[nr/t]+[ns/t], where [ ]=floor.
Taking r=1, s=(-1+sqrt(5))/2, t=(1+sqrt(5))/2 gives

Crossrefs

Programs

  • Mathematica
    r = 1; s = (-1 + 5^(1/2))/2; t = (1 + 5^(1/2))/2;
    a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
    b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
    c[n_] := n + Floor[n*r/t] + Floor[n*s/t]
    Table[a[n], {n, 1, 120}]  (* A283233 *)
    Table[b[n], {n, 1, 120}]  (* A283234 *)
    Table[c[n], {n, 1, 120}]  (* A005408 *)
  • Python
    from math import isqrt
    def A283234(n): return ((n+isqrt(5*n**2))&-2)+(n<<1) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = 2*floor(n*s), where r = (-1+sqrt(5))/2.

A356102 Intersection of A001950 and A022839.

Original entry on oeis.org

2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, 89, 91, 96, 102, 107, 109, 120, 125, 136, 138, 143, 149, 154, 167, 172, 178, 183, 185, 196, 201, 212, 214, 219, 225, 230, 243, 248, 259, 261, 272, 277, 290, 295, 301, 306, 308, 319, 324, 326, 328, 330, 333, 335
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2022

Keywords

Comments

This is the third of four sequences that partition the positive integers. See A351415.

Examples

			Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers.  Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1)  u ^ v = intersection of u and v (in increasing order);
(2)  u ^ v';
(3)  u' ^ v;
(4)  u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1)  u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) =  A351415
(2)  u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) =  A356101
(3)  u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4)  u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A351415, A356101, A356103, A356104 (results of composition instead of intersections), A190509 (composites, reversed order).

Programs

  • Mathematica
    z = 200;
    r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}]  (* A000201 *)
    u1 = Take[Complement[Range[1000], u], z]  (* A001950 *)
    r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}]  (* A022839 *)
    v1 = Take[Complement[Range[1000], v], z]  (* A108598 *)
    Intersection[u, v]   (* A351415 *)
    Intersection[u, v1]  (* A356101 *)
    Intersection[u1, v]  (* A356102 *)
    Intersection[u1, v1] (* A356103 *)

A356103 Intersection of A001950 and A108598.

Original entry on oeis.org

5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, 57, 65, 68, 70, 75, 81, 83, 86, 94, 99, 104, 112, 115, 117, 123, 128, 130, 133, 141, 146, 151, 157, 159, 162, 164, 170, 175, 180, 188, 191, 193, 198, 204, 206, 209, 217, 222, 227, 233, 235, 238, 240, 246, 251
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2022

Keywords

Comments

This is the fourth of four sequences that partition the positive integers. See A351415.

Examples

			Starting with a general overview, suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers.  Let u' and v' be their complements, and assume that the following four sequences are infinite:
(1)  u ^ v = intersection of u and v (in increasing order);
(2)  u ^ v';
(3)  u' ^ v;
(4)  u' ^ v'.
Every positive integer is in exactly one of the four sequences. For A351415, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so that r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
(1)  u ^ v = (4, 6, 8, 11, 17, 22, 24, 29, 33, 35, 38, 40, 42, ...) =  A351415
(2)  u ^ v' = (1, 3, 9, 12, 14, 16, 19, 21, 25, 27, 30, 32, 37, ...) =  A356101
(3)  u' ^ v = (2, 13, 15, 20, 26, 31, 44, 49, 60, 62, 73, 78, ...) = A356102
(4)  u' ^ v' = (5, 7, 10, 18, 23, 28, 34, 36, 39, 41, 47, 52, 54, ...) = A356103
		

Crossrefs

Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A351415, A356101, A356102, A356104 (results of composition instead of intersections), A190509 (composites, reversed order).

Programs

  • Mathematica
    z = 200;
    r = (1 + Sqrt[5])/2; u = Table[Floor[n*r], {n, 1, z}]  (* A000201 *)
    u1 = Take[Complement[Range[1000], u], z]  (* A001950 *)
    r1 = Sqrt[5]; v = Table[Floor[n*r1], {n, 1, z}]  (* A022839 *)
    v1 = Take[Complement[Range[1000], v], z]  (* A108598 *)
    Intersection[u, v]   (* A351415 *)
    Intersection[u, v1]  (* A356101 *)
    Intersection[u1, v]  (* A356102 *)
    Intersection[u1, v1] (* A356103 *)

A003256 a(n) is the number m such that A242094(m) = A001950(n).

Original entry on oeis.org

2, 5, 7, 9, 12, 14, 17, 19, 21, 24, 26, 28, 31, 33, 36, 38, 40, 43, 45, 47, 49, 51, 54, 56, 58, 61, 63, 66, 68, 70, 73, 75, 77, 80, 82, 85, 87, 89, 92, 94, 97, 99, 101, 104, 106, 108, 111, 113, 116, 118, 120, 123, 125, 127, 129, 131, 134, 136, 138, 141, 143
Offset: 1

Views

Author

Keywords

Comments

This is the function named v in [Carlitz]. - Eric M. Schmidt, Aug 14 2014
Ron Reble remarks that Carlitz has a typo on page 339: Carlitz writes "In particular since (b) is a proper subset of (a), there exists a function v such that b = av." It should be "(b) is a proper subset of (u), ... b = uv." - N. J. A. Sloane, Jan 20 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a003256 = (+ 1) . fromJust . (`elemIndex` a242094_list) . a001950
    -- Reinhard Zumkeller, Oct 03 2014

Formula

a(n) = A001950(n) - j, where j is the largest integer such that A003234(j) < n. [Carlitz, Thm. 7.3]. - Eric M. Schmidt, Sep 16 2014

Extensions

New definition by Eric M. Schmidt, Aug 17 2014

A095281 Upper Wythoff primes, i.e., primes in A001950.

Original entry on oeis.org

2, 5, 7, 13, 23, 31, 41, 47, 73, 83, 89, 107, 109, 149, 151, 157, 167, 191, 193, 227, 233, 251, 269, 277, 293, 311, 337, 353, 379, 397, 421, 431, 439, 463, 479, 523, 541, 547, 557, 599, 607, 617, 641, 659, 683, 691, 701, 709, 719, 727, 733, 743
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Contains all primes p whose Zeckendorf-expansion A014417(p) ends with an odd number of 0's.

Crossrefs

Intersection of A000040 & A001950. Complement of A095280 in A000040. Cf. A095081, A095083, A095084, A095290.

Programs

  • Python
    from math import isqrt
    from itertools import count, islice
    from sympy import isprime
    def A095281_gen(): # generator of terms
        return filter(isprime,((n+isqrt(5*n**2)>>1)+n for n in count(1)))
    A095281_list = list(islice(A095281_gen(),30)) # Chai Wah Wu, Aug 16 2022

A255671 Number of the column of the Wythoff array (A035513) that contains U(n), where U = A001950, the upper Wythoff sequence.

Original entry on oeis.org

2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 10, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 8, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 2, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2015

Keywords

Comments

All the terms are even, and every even positive integer occurs infinitely many times.
From Michel Dekking, Dec 09 2024 and Ad van Loon: (Start)
This sequence has a self-similarity property:
a(U(n)) = a(n) + 2 for all n.
Proof: it is known that the columns C_h of the Wythoff array are compound Wythoff sequences. For example: C_1 = L^2, C_2 = UL.
In general column C_h is equal to LU^{(h-1)/2} if h is odd, and to U^{h/2}L if h is even (see Theorem 10 in Kimberling’s 2008 paper in JIS).
Now if h is odd then the elements of column C_h are a subsequence of L, so no U(m) can occur in such a column.
If h is even then the elements of column C_h form a subsequence of U, and so many U(m) occur. Suppose that a(m) = h. Then U(U(m)) is an element of column UU^{h/2}L = U^{(h+2)/2}L. This implies a(U(m)) = a(m) +2. (End)

Examples

			Corner of the Wythoff array:
  1   2   3   5   8   13
  4   7   11  18  29  47
  6   10  16  26  42  68
  9   15  24  39  63  102
L = (1,3,4,6,8,9,11,...); U = (2,5,7,10,13,15,18,...), so that
A255670 = (1,3,1,1,5,...) and A255671 = (2,4,2,2,6,...).
		

Crossrefs

Programs

  • Mathematica
    z = 13; r = GoldenRatio; f[1] = {1}; f[2] = {1, 2};
    f[n_] := f[n] = Join[f[n - 1], Most[f[n - 2]], {n}]; f[z];
    g[n_] := g[n] = f[z][[n]]; Table[g[n], {n, 1, 100}]  (* A035612 *)
    Table[g[Floor[n*r]], {n, 1, (1/r) Length[f[z]]}]     (* A255670 *)
    Table[g[Floor[n*r^2]], {n, 1, (1/r^2) Length[f[z]]}] (* A255671 *)

Formula

a(n) = 2 if and only if n = L(j) for some j; otherwise, n = U(k) for some k.
a(n) = A255670(n) + 1 = A035612(A001950(n)).

A258236 Number of steps from n to 0, where allowable steps are x -> [x/r] if x is in upper Wythoff sequence (A001950) and x -> [r*x] otherwise, where [ ] = floor and r = (3+sqrt(5))/2.

Original entry on oeis.org

0, 2, 1, 3, 5, 3, 5, 2, 4, 6, 4, 6, 8, 6, 8, 4, 6, 8, 6, 8, 3, 5, 7, 5, 7, 9, 7, 9, 5, 7, 9, 7, 9, 11, 9, 11, 7, 9, 11, 9, 11, 5, 7, 9, 7, 9, 11, 9, 11, 7, 9, 11, 9, 11, 4, 6, 8, 6, 8, 10, 8, 10, 6, 8, 10, 8, 10, 12, 10, 12, 8, 10, 12, 10, 12, 6, 8, 10, 8
Offset: 0

Views

Author

Clark Kimberling, Jun 05 2015

Keywords

Comments

a(n) = number of edges from 0 to n in the tree at A258235.

Examples

			29->75->28->10->3->7->2->0, so that a(29) = 7.
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio^2; w = Table[Floor[r*n], {n, 1, 1000}];
    f[x_] := If[MemberQ[w, x], Floor[x/r], Floor[r*x]];
    g[x_] := Drop[FixedPointList[f, x], -1];
    Table[-1+ Length[g[n]], {n, 0, 100}]
Previous Showing 11-20 of 259 results. Next