cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 250 results. Next

A336571 Number of sets of divisors d|n, 1 < d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 5, 1, 3, 3, 8, 1, 5, 1, 5, 3, 3, 1, 14, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 3, 17, 1, 3, 3, 14, 1, 4, 1, 5, 5, 3, 1, 36, 2, 5, 3, 5, 1, 14, 3, 14, 3, 3, 1, 16, 1, 3, 5, 32, 3, 4, 1, 5, 3, 4, 1, 35, 1, 3, 5, 5, 3, 4, 1, 36, 8, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 4, 6, 12, 16, 24, 84, 36:
  {}   {}   {}     {}       {}        {}        {}
  {2}  {2}  {2}    {2}      {2}       {2}       {2}
       {3}  {3}    {4}      {3}       {3}       {3}
            {4}    {8}      {4}       {4}       {4}
            {2,4}  {2,4}    {8}       {7}       {9}
                   {2,8}    {12}      {12}      {12}
                   {4,8}    {2,4}     {28}      {18}
                   {2,4,8}  {2,8}     {2,4}     {2,4}
                            {4,8}     {2,12}    {3,9}
                            {2,12}    {2,28}    {2,12}
                            {3,12}    {3,12}    {2,18}
                            {4,12}    {4,12}    {3,12}
                            {2,4,8}   {4,28}    {3,18}
                            {2,4,12}  {7,28}    {4,12}
                                      {2,4,12}  {9,18}
                                      {2,4,28}  {2,4,12}
                                                {3,9,18}
		

Crossrefs

A336423 is the version for chains containing n.
A336570 is the maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,Sum[strchns[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[strchns[n],{n,100}]

A325858 Number of Golomb partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 25, 36, 47, 59, 78, 99, 122, 155, 195, 232, 295, 355, 432, 522, 641, 749, 919, 1076, 1283, 1506, 1802, 2067, 2470, 2835, 3322, 3815, 4496, 5070, 5959, 6736, 7807, 8849, 10266, 11499, 13326, 14928, 17140, 19193, 22037, 24519, 28106
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

We define a Golomb partition of n to be an integer partition of n such that every pair of distinct parts has a different difference.
Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum.
The strict case is A325876.

Examples

			The a(1) = 1 through a(7) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (411)     (331)
                            (11111)  (2211)    (421)
                                     (3111)    (511)
                                     (21111)   (2221)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
The A000041(9) - a(9) = 5 non-Golomb partitions of 9 are: (531), (432), (3321), (32211), (321111).
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A325860 Number of subsets of {1..n} such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 2, 4, 8, 14, 28, 52, 104, 188, 308, 548, 1096, 1784, 3568, 6168, 10404, 16200, 32400, 49968, 99936, 155584, 256944, 433736, 867472, 1297504, 2026288, 3387216, 5692056, 8682912, 17365824, 25243200, 50486400, 78433056, 125191968, 206649216, 328195632
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}    {}     {}
      {1}  {1}   {1}    {1}
           {2}   {2}    {2}
           {12}  {3}    {3}
                 {12}   {4}
                 {13}   {12}
                 {23}   {13}
                 {123}  {14}
                        {23}
                        {24}
                        {34}
                        {123}
                        {134}
                        {234}
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]],{n,0,20}]

Extensions

a(21)-a(25) from Alois P. Heinz, Jun 07 2019
a(26)-a(35) from Fausto A. C. Cariboni, Oct 04 2020

A325864 Number of subsets of {1..n} of which every subset has a different sum.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 36, 56, 91, 135, 211, 307, 446, 625, 882, 1194, 1677, 2238, 3031, 4001, 5460, 6995, 9302, 11921, 15424, 19554, 25032, 31005, 39170, 48251, 59917, 73093, 90831, 109271, 134049, 160922, 196109, 234179, 284157, 335933, 408390, 482597, 575109
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2019

Keywords

Examples

			The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {2,3,4}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Plus@@@Subsets[#]&]],{n,0,10}]

Extensions

a(18)-a(42) from Alois P. Heinz, Jun 03 2019

A347460 Number of distinct possible alternating products of factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
  1  4  8    12   24   30    36   48    60    120
     1  2    3    6    10/3  9    12    15    30
        1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
             1/3  2/3  3/10  1    3     15/4  15/2
                  3/8  2/15  4/9  3/4   12/5  24/5
                  1/6        1/4  1/3   3/5   10/3
                             1/9  3/16  5/12  5/6
                                  1/12  4/15  8/15
                                        3/20  3/10
                                        1/15  5/24
                                              2/15
                                              3/40
                                              1/30
		

Crossrefs

Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The version for partitions (not factorizations) is A347461, reverse A347462.
The odd-length case is A347708.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A292886 counts knapsack factorizations, by sum A293627.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@facs[n]]],{n,100}]

A353863 Number of integer partitions of n whose weak run-sums cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 11, 16, 20, 24, 30, 43, 47, 62, 79, 94, 113, 143, 170, 211, 256, 307, 372, 449, 531, 648, 779, 926, 1100, 1323, 1562, 1864, 2190, 2595, 3053, 3611, 4242, 4977, 5834, 6825, 7973, 9344, 10844, 12641, 14699, 17072, 19822
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

A weak run-sum of a sequence is the sum of any consecutive constant subsequence. For example, the weak run-sums of (3,2,2,1) are {1,2,3,4}.
This is a kind of completeness property, cf. A126796.

Examples

			The a(1) = 1 through a(8) = 7 partitions:
  (1)  (11)  (21)   (211)   (311)    (321)     (3211)     (3221)
             (111)  (1111)  (2111)   (3111)    (4111)     (32111)
                            (11111)  (21111)   (22111)    (41111)
                                     (111111)  (31111)    (221111)
                                               (211111)   (311111)
                                               (1111111)  (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of weak run-sums we have A000009.
For multiplicities instead of weak run-sums we have A317081.
If weak run-sums are distinct we have A353865, the completion of A353864.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A005811 counts runs in binary expansion.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870, comps A353860.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct weak run-sums of prime indices.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    wkrs[y_]:=Union[Total/@Select[msubs[y],SameQ@@#&]];
    Table[Length[Select[IntegerPartitions[n],normQ[Rest[wkrs[#]]]&]],{n,0,15}]
  • PARI
    \\ isok(p) tests the partition.
    isok(p)={my(b=0, s=0, t=0); for(i=1, #p, if(p[i]<>t, t=p[i]; s=0); s += t; b = bitor(b, 1<<(s-1))); bitand(b,b+1)==0}
    a(n) = {my(r=0); forpart(p=n, r+=isok(p)); r} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(31) onwards from Andrew Howroyd, Jan 15 2024

A323910 Dirichlet inverse of the deficiency of n, A033879.

Original entry on oeis.org

1, -1, -2, 0, -4, 4, -6, 0, -1, 6, -10, 2, -12, 8, 10, 0, -16, 1, -18, 2, 14, 12, -22, 4, -3, 14, -2, 2, -28, -16, -30, 0, 22, 18, 26, 4, -36, 20, 26, 4, -40, -24, -42, 2, 4, 24, -46, 8, -5, -1, 34, 2, -52, 0, 42, 4, 38, 30, -58, 2, -60, 32, 6, 0, 50, -40, -66, 2, 46, -40, -70, 12, -72, 38, 2, 2, 62, -48, -78, 8, -4, 42, -82, -2, 66, 44, 58, 4, -88, 2, 74, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2019

Keywords

Crossrefs

Cf. A033879, A323911, A323912, A359549 (parity of terms).
Sequences that appear in the convolution formulas: A002033, A008683, A023900, A055615, A046692, A067824, A074206, A174725, A191161, A327960, A328722, A330575, A345182, A349341, A346246, A349387.

Programs

  • Mathematica
    b[n_] := 2 n - DivisorSigma[1, n];
    a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
    Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
  • PARI
    up_to = 16384;
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA033879(n) = (2*n-sigma(n));
    v323910 = DirInverse(vector(up_to,n,A033879(n)));
    A323910(n) = v323910[n];

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA033879(n/d) * a(d).
From Antti Karttunen, Nov 14 2024: (Start)
Following convolution formulas have been conjectured for this sequence by Sequence Machine, with each one giving the first 10000 terms correctly:
a(n) = Sum_{d|n} A046692(d)*A067824(n/d).
a(n) = Sum_{d|n} A055615(d)*A074206(n/d).
a(n) = Sum_{d|n} A023900(d)*A174725(n/d).
a(n) = Sum_{d|n} A008683(d)*A323912(n/d).
a(n) = Sum_{d|n} A191161(d)*A327960(n/d).
a(n) = Sum_{d|n} A328722(d)*A330575(n/d).
a(n) = Sum_{d|n} A345182(d)*A349341(n/d).
a(n) = Sum_{d|n} A346246(d)*A349387(n/d).
a(n) = Sum_{d|n} A002033(d-1)*A055615(n/d).
(End)

A325768 Number of integer partitions of n for which every restriction to a subinterval has a different sum.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 12, 15, 15, 23, 22, 29, 32, 40, 42, 55, 56, 71, 75, 92, 100, 124, 128, 152, 167, 198, 212, 255, 269, 315, 343, 392, 428, 501, 529, 615, 665, 757, 812, 937, 1002, 1142, 1238, 1385, 1490, 1701, 1808, 2038, 2200, 2476
Offset: 0

Views

Author

Gus Wiseman, May 21 2019

Keywords

Comments

Also the number of Golomb rulers of length n whose consecutive marks are separated by weakly decreasing distances.
The Heinz numbers of these partitions are given by A325779.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)
                        (41)  (51)  (52)   (62)   (63)
                                    (61)   (71)   (72)
                                    (421)  (521)  (81)
                                                  (432)
                                                  (531)
                                                  (621)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,0,30}]

A325877 Number of strict integer partitions of n such that every orderless pair of distinct parts has a different sum.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 18, 19, 26, 28, 36, 37, 50, 52, 67, 68, 89, 94, 115, 121, 151, 160, 195, 200, 247, 265, 312, 329, 386, 418, 487, 519, 600, 640, 742, 792, 901, 978, 1088, 1185, 1331, 1453, 1605, 1729, 1925, 2101, 2311, 2524, 2741, 3000
Offset: 0

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The non-strict case is A325857.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)   (53)   (54)   (64)
                        (41)  (51)   (52)   (62)   (63)   (73)
                              (321)  (61)   (71)   (72)   (82)
                                     (421)  (431)  (81)   (91)
                                            (521)  (432)  (532)
                                                   (531)  (541)
                                                   (621)  (631)
                                                          (721)
		

Crossrefs

The subset case is A196723.
The maximal case is A325878.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A336423 Number of strict chains of divisors from n to 1 using terms of A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 4, 2, 0, 1, 5, 1, 0, 0, 8, 1, 5, 1, 5, 0, 0, 1, 14, 2, 0, 4, 5, 1, 0, 1, 16, 0, 0, 0, 0, 1, 0, 0, 14, 1, 0, 1, 5, 5, 0, 1, 36, 2, 5, 0, 5, 1, 14, 0, 14, 0, 0, 1, 0, 1, 0, 5, 32, 0, 0, 1, 5, 0, 0, 1, 35, 1, 0, 5, 5, 0, 0, 1, 36, 8, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) chains for n = 4, 8, 12, 16, 24, 32:
  4/1    8/1      12/1      16/1        24/1         32/1
  4/2/1  8/2/1    12/2/1    16/2/1      24/2/1       32/2/1
         8/4/1    12/3/1    16/4/1      24/3/1       32/4/1
         8/4/2/1  12/4/1    16/8/1      24/4/1       32/8/1
                  12/4/2/1  16/4/2/1    24/8/1       32/16/1
                            16/8/2/1    24/12/1      32/4/2/1
                            16/8/4/1    24/4/2/1     32/8/2/1
                            16/8/4/2/1  24/8/2/1     32/8/4/1
                                        24/8/4/1     32/16/2/1
                                        24/12/2/1    32/16/4/1
                                        24/12/3/1    32/16/8/1
                                        24/12/4/1    32/8/4/2/1
                                        24/8/4/2/1   32/16/4/2/1
                                        24/12/4/2/1  32/16/8/2/1
                                                     32/16/8/4/1
                                                     32/16/8/4/2/1
		

Crossrefs

A336569 is the maximal case.
A336571 does not require n itself to have distinct prime multiplicities.
A000005 counts divisors.
A007425 counts divisors of divisors.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty strict chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A337256 counts strict chains of divisors.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,If[!UnsameQ@@Last/@FactorInteger[n],0,Sum[strchns[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]]];
    Table[strchns[n],{n,100}]
Previous Showing 41-50 of 250 results. Next