cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 67 results. Next

A236843 Triangle read by rows related to the Catalan transform of the Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 4, 1, 14, 28, 14, 6, 1, 42, 90, 48, 27, 7, 1, 132, 297, 165, 110, 35, 9, 1, 429, 1001, 572, 429, 154, 54, 10, 1, 1430, 3432, 2002, 1638, 637, 273, 65, 12, 1, 4862, 11934, 7072, 6188, 2548, 1260, 350, 90, 13, 1, 16796, 41990, 25194, 23256, 9996, 5508, 1700, 544, 104, 15, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 01 2014

Keywords

Comments

Row sums are A109262(n+1).

Examples

			Triangle begins:
    1;
    1,   1;
    2,   3,   1;
    5,   9,   4,   1;
   14,  28,  14,   6,  1;
   42,  90,  48,  27,  7, 1;
  132, 297, 165, 110, 35, 9, 1;
Production matrix is:
  1...1
  1...2...1
  0...1...1...1
  0...1...1...2...1
  0...0...0...1...1...1
  0...0...0...1...1...2...1
  0...0...0...0...0...1...1...1
  0...0...0...0...0...1...1...2...1
  0...0...0...0...0...0...0...1...1...1
  0...0...0...0...0...0...0...1...1...2...1
  0...0...0...0...0...0...0...0...0...1...1...1
  ...
		

Crossrefs

Columns: A000108 (k=0), A000245 (k=1), A002057 (k=2), A003517 (k=3), A000588 (k=4), A001392 (k=5), A003519 (k=6), A090749 (k=7), A000590 (k=8).

Programs

  • Magma
    F:=Factorial;
    A236843:= func< n,k | (1/4)*(6*k+5-(-1)^k)*F(2*n-Floor(k/2))/(F(n-k)*F(n+Floor((k+1)/2)+1)) >;
    [A236843(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 13 2022
    
  • Mathematica
    T[n_, k_]:= (1/4)*(6*k+5-(-1)^k)*(2*n-Floor[k/2])!/((n-k)!*(n+Floor[(k+1)/2]+1)!);
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 13 2022 *)
  • PARI
    T(n, k) = (1/4)*(6*k + 5 - (-1)^k)*(2*n - (k\2))!/((n-k)!*(n + (k+1)\2 + 1)!) \\ Andrew Howroyd, Jan 04 2023
  • SageMath
    F=factorial
    def A236843(n,k): return (1/2)*(3*k+2+(k%2))*F(2*n-(k//2))/(F(n-k)*F(n+((k+1)//2)+1))
    flatten([[A236843(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 13 2022
    

Formula

G.f. for the column k (with zeros omitted): C(x)^A032766(k+1) where C(x) is g.f. for Catalan numbers (A000108).
Sum_{k=0..n} T(n,k) = A109262(n+1).
Sum_{k=0..n} T(n+k,2k) = A026726(n).
Sum_{k=0..n} T(n+1+k,2k+1) = A026674(n+1).
T(n, k) = (1/4)*(6*k + 5 - (-1)^k)*(2*n - floor(k/2))!/((n-k)!*(n + floor((k+1)/2) + 1)!). - G. C. Greubel, Jun 13 2022

A279004 Irregular triangle read by rows: generalized Catalan triangle C_3(n,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 1, 3, 6, 9, 9, 1, 4, 10, 19, 28, 28, 1, 5, 15, 34, 62, 90, 90, 1, 6, 21, 55, 117, 207, 297, 297, 1, 7, 28, 83, 200, 407, 704, 1001, 1001, 1, 8, 36, 119, 319, 726, 1430, 2431, 3432, 3432
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2016

Keywords

Comments

The main diagonal is A000245, the third convolution of the Catalan numbers. See Tedford 2011. Also see A002057 for a similarly constructed triangle related to the fourth convolution of the Catalan numbers. - Peter Bala, Apr 14 2017

Examples

			Triangle begins:
1,1,1,
1,2,3,3,
1,3,6,9,9,
1,4,10,19,28,28,
1,5,15,34,62,90,90,
1,6,21,55,117,207,297,297,
1,7,28,83,200,407,704,1001,1001,
1,8,36,119,319,726,1430,2431,3432,3432,
...
		

Crossrefs

Programs

  • Mathematica
    c[m_][0, k_] /; k <= m-1 = 1;
    c[m_][n_, k_] /; 0 <= k <= m+n-1 := c[m][n, k] = c[m][n-1, k]+c[m][n, k-1];
    c[][, _] = 0;
    Table[c[3][n, k], {n, 0, 7}, {k, 0, n+2}] // Flatten (* Jean-François Alcover, Oct 07 2018 *)

A360143 a(n) = Sum_{k=0..n} binomial(2*n+2*k,n-k).

Original entry on oeis.org

1, 3, 13, 59, 271, 1250, 5775, 26696, 123423, 570576, 2637306, 12187755, 56312089, 260134905, 1201493926, 5548533913, 25619837773, 118283258215, 546041467522, 2520515546083, 11633752319476, 53693477980816, 247798435809211, 1143547904185879, 5277058908767419
Offset: 0

Views

Author

Seiichi Manyama, Jan 27 2023

Keywords

Crossrefs

Programs

  • Maple
    A360143 := proc(n)
        add(binomial(2*n+2*k,n-k),k=0..n) ;
    end proc:
    seq(A360143(n),n=0..70) ;# R. J. Mathar, Mar 12 2023
  • Mathematica
    Table[Sum[Binomial[2n+2k,n-k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*n+2*k, n-k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x*(2/(1+sqrt(1-4*x)))^4)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x * c(x)^4) ), where c(x) is the g.f. of A000108.
D-finite with recurrence +n*(n-7)*a(n) -(7*n-4)*(n-7)*a(n-1) +4*(n^2-13*n+17)*a(n-2) +(35*n^2-217*n+304)*a(n-3) -2*(n-2)*(7*n-29)*a(n-4) +4*(n-2)*(2*n-9)*a(n-5)=0. - R. J. Mathar, Mar 12 2023
a(n) = binomial(2*n, n)*hypergeom([1, -n, 1/2+n, 1+n], [(1+n)/3, (2+n)/3, 1+n/3], -4/27). - Stefano Spezia, Jun 17 2025

A000908 Atom-rooted polyenoids with n edges with symmetry class C_s.

Original entry on oeis.org

0, 0, 1, 4, 14, 47, 164, 565, 1982, 6977, 24850, 89082, 321855, 1169853, 4276923, 15713799, 57998270, 214934984, 799473752, 2983682702, 11169374372, 41929478873, 157807392886, 595340271682, 2250901007539, 8527699269192, 32369066434276
Offset: 0

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

Crossrefs

Programs

  • Maple
    U0 := (1-sqrt(1-4*x))/2/x ;
    V0 := 1+x*subs(x=x^2,U0) ;
    C := ( subs(x=x^2,U0)^3 -3*subs(x=x^4,U0)*subs(x=x^2,V0) -subs(x=x^6,U0) +3*subs(x=x^6,V0) )/6 ; # (19)
    taylor(%,x=0,60) ;
    L := gfun[seriestolist](%) ;
    seq(op(2*i+1,L),i=0..(nops(L)-1)/2) ; # R. J. Mathar, Jul 26 2019
  • Mathematica
    u0[x_] := (1 - Sqrt[1 - 4 x])/(2 x); v0[x_] := 1 + x u0[x^2];
    gf = Simplify[(u0[x]^3 - 3 u0[x^2] v0[x] - u0[x^3] + 3 v0[x^3])/6]
    CoefficientList[gf + O[x]^30, x] (* Andrey Zabolotskiy, Feb 08 2023 *)

Formula

a(n) = A003446(n+1) - u((n-3)/6) - (u(n/3) - u((n-3)/6))/2 - (u(n/2) + (u((n+1)/2) - u((n-3)/6))) for n > 0 where u(n) = binomial(2*n, n)/(n+1) if n is an integer and 0 otherwise. - Sean A. Irvine, Oct 05 2015

Extensions

More terms from Sean A. Irvine, Oct 05 2015

A000935 Number of free planar polyenoids with 2n nodes and symmetry point group C_{2h}.

Original entry on oeis.org

0, 1, 2, 7, 20, 63, 191, 598, 1870, 5906
Offset: 1

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

Extensions

a(8)-a(10) and improved title by Sean A. Irvine, Oct 15 2015

A000947 Number of free nonplanar polyenoids with n nodes and symmetry point group C_{2v}.

Original entry on oeis.org

1, 2, 4, 10, 15, 44, 56, 177, 212, 706, 792, 2714, 2961
Offset: 7

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

Formula

a(n) = A000063(n + 2) - A000936(n). - Sean A. Irvine, Oct 15 2015

Extensions

a(16)-a(19) and title improved by Sean A. Irvine, Oct 16 2015

A000948 Number of free nonplanar polyenoids with n nodes and symmetry point group C_s.

Original entry on oeis.org

0, 3, 20, 99, 450, 1896, 7771, 30895, 121144, 468409, 1796584, 6841014, 25925062
Offset: 7

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

Formula

a(n) = A000131(n+2) - A000941(n). - Sean A. Irvine, Oct 15 2015

Extensions

a(16)-a(19) and title improved by Sean A. Irvine, Oct 16 2015

A000953 Number of free nonplanar polyenoids with n nodes.

Original entry on oeis.org

1, 5, 24, 109, 465, 1943, 7827, 31095, 121356, 469235, 1797376, 6844290, 25928036
Offset: 7

Views

Author

E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

References

  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751

Formula

a(n) = A000207(n) - A000942(n). - Sean A. Irvine, Oct 15 2015

Extensions

a(16)-a(19) from Sean A. Irvine, Oct 15 2015

A050145 T(n,k)=M(2n,n-1,k-1), 0<=k<=n, n >= 0, array M as in A050144.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 5, 4, 5, 1, 14, 14, 20, 7, 1, 42, 48, 75, 35, 9, 1, 132, 165, 275, 154, 54, 11, 1, 429, 572, 1001, 637, 273, 77, 13, 1, 1430, 2002, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 7072, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0

Views

Author

Keywords

Comments

First 7 columns of T are A000108, A002057, A000344, A000588, A001392, A000589, A000590.

Examples

			Rows: {0}; {1,0}; {2,1,1}; ...
		

A099364 An inverse Chebyshev transform of (1-x)^2.

Original entry on oeis.org

1, -2, 2, -4, 5, -10, 14, -28, 42, -84, 132, -264, 429, -858, 1430, -2860, 4862, -9724, 16796, -33592, 58786, -117572, 208012, -416024, 742900, -1485800, 2674440, -5348880, 9694845, -19389690, 35357670, -70715340, 129644790, -259289580, 477638700, -955277400, 1767263190, -3534526380
Offset: 0

Views

Author

Paul Barry, Oct 13 2004

Keywords

Comments

Second binomial transform of the expansion of c(-x)^4 (i.e. of (-1)^n*4C(2n+3,n)/(n+4)). The g.f. is transformed to (1-x)^2 under the Chebyshev transformation A(x)->(1/(1+x^2))A(x/(1+x^2)).

Crossrefs

Formula

G.f.: (c(x^2)-1)(1-2x)/x^2 with c(x) the g.f. of A000108; a(n)=sum{k=0..n, (k+1)C(n, (n-k)/2)(-1)^k*C(2, k)(1+(-1)^(n-k))/(n+k+2)}; a(n)=sum{k=0..n, (k+1)C(n, (n-k)/2)b(k)(1+(-1)^(n-k))/(n+k+2)} where b(n)=0^n+sum{k=0..n, C(n, k)(-1)^(n-k)(-3k+k(k+1)/2)}; a(2n)=C(n+1); a(2n+1)=-2*C(n+1).
D-finite with recurrence: (n+4)*a(n) +2*a(n-1) -4*n*a(n-2)=0. - R. J. Mathar, Nov 09 2012
Previous Showing 51-60 of 67 results. Next