cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 74 results. Next

A156708 Triangle read by rows, binomial transform of A154325.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 8, 11, 5, 1, 16, 26, 16, 6, 1, 32, 57, 42, 22, 7, 1, 64, 120, 99, 64, 29, 8, 1, 128, 247, 219, 163, 93, 37, 9, 1, 256, 502, 466, 382, 256, 130, 46, 10, 1, 512, 1013, 968, 848, 638, 386, 176, 56, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 13 2009

Keywords

Comments

Row sums = A002064: (1, 3, 9, 25, 65, 161,...).

Examples

			First few rows of the triangle =
1;
2, 1;
4, 4, 1;
8, 11, 5, 1;
16, 26, 16, 6, 1;
32, 57, 42, 22, 7, 1;
64, 120, 99, 64, 29, 8, 1;
128, 247, 219, 163, 93, 37, 9, 1;
256, 502, 466, 382, 256, 130, 46, 10, 1;
512, 1013, 968, 848, 638, 386, 176, 56, 11, 1;
1024, 2036, 1981, 1816, 1486, 1024, 562, 232, 67, 12, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A007318 * A154325

A195418 a(n) = phi(C(n)) / gcd(C(n)-1, phi(C(n))), where C(n) is the n-th Cullen number.

Original entry on oeis.org

1, 1, 3, 5, 3, 33, 5, 33, 341, 1045, 189, 1299, 891, 4437, 9477, 581, 3855, 105525, 27825, 23751, 173043, 10531345, 56511, 2386125, 380955, 256861, 24926139, 5108467, 32397379, 930343095, 930291, 36512775
Offset: 0

Views

Author

Alonso del Arte, Sep 20 2011

Keywords

Comments

When C(n) is prime (or 1), then a(n) = 1; that is, n is in A005849.
On the penultimate page of their paper, Grau and Luca ask for "a good (large) lower bound on this quantity which is valid for all n and which tends to infinity with n."

Examples

			a(2) = 3 because the second Cullen number is 9; phi(9) = 6, therefore 6/gcd(8, 6) = 6/2 = 3.
		

Crossrefs

Programs

  • Mathematica
    cullen[n_] := n(2^n) + 1; Table[EulerPhi[cullen[n]]/GCD[cullen[n] - 1, EulerPhi[cullen[n]]], {n, 0, 39}]
  • PARI
    a(n)=my(C=n<Charles R Greathouse IV, Feb 05 2013

A274602 Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 5, 2, 3, 11, 9, 3, 4, 19, 20, 13, 4, 5, 29, 35, 29, 17, 5, 6, 41, 54, 51, 38, 21, 6, 7, 55, 77, 79, 67, 47, 25, 7, 8, 71, 104, 113, 104, 83, 56, 29, 8, 9, 89, 135, 153, 149, 129, 99, 65, 33, 9, 10, 109, 170, 199, 202, 185, 154, 115, 74, 37, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 01 2016

Keywords

Comments

Mirrored version of a(n) is T(n,k) = (n-k)*(k+1)^2+k, 0 <= k <= n, read by rows:
0
1 1
2 5 2
3 9 11 3
4 13 20 19 4
5 17 29 35 29 5
As an infinite square array (matrix) with comments:
0 1 2 3 4 5 A001477
1 5 11 19 29 41 A028387
2 9 20 35 54 77 A014107
3 13 29 51 79 113 A144391
4 17 38 67 104 149 A182868
5 21 47 83 129 185

Examples

			0; 1,1; 2,5,2; 3,11,9,3; 4,19,20,13,4; 5,29,35,29,17,5; ...
As an infinite triangular array:
0
1   1
2   5   2
3  11   9    3
4  19  20   13    4
5  29  35   29   17    5
As an infinite square array (matrix) with comments:
0   1   2    3    4    5                   A001477
1   5   9   13   17   21                   A016813
2  11  20   29   38   47                   A017185
3  19  35   51   67   83
4  29  54   79  104  129
5  41  77  113  149  185
		

Crossrefs

Cf. Triangle read by rows: T(n,k) = k*(n-k+1)^m+n-k, 0 <= k <= n: A003056 (m = 0), A059036 (m = 1), A278910 (m = k).

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1)^2+n-k: k in [0..n]]: n in [0..10]];
  • Mathematica
    Table[k (n - k + 1)^(k + #) + n - k &[2 - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 02 2016 *)

A278907 a(n) = floor((n*2^(n+1)+2)/(2*n-(-1)^n+3)) - floor((n*2^(n+1)-2)/(2*n-(-1)^n+3)).

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Nov 30 2016

Keywords

Comments

If a(n) = b(n) - c(n), then
b(n) = 1, 1, 3, 5, 13, 23, 55, 99, 227, 419, 931, 1733, 3781, 7099, 15291, 28913, 61681, 117275, 248347, 474355, 998643, 1914791, 4011943, 7717519, 16106127, 31068918, 64623350, 124961333, 259179061, 502234079, 1039104991, ...
c(n) = -1, 0, 2, 4, 12, 22, 54, 99, 227, 418, 930, 1732, 3780, 7099, 15291, 28912, 61680, 117274, 248346, 474355, 998643, 1914790, 4011942, 7717519, 16106127, 31068918, 64623350, 124961332, 259179060, 502234078, 1039104990, ...

Examples

			a(0) = b(0) - c(0) = 1 - (-1) = 2,
a(1) = b(1) - c(1) = 1 - 0 = 1,
a(2) = b(2) - c(2) = 3 - 2 = 1.
		

Crossrefs

Cf. A002064 (Cullen numbers).

Programs

  • Magma
    [((n*2^(n+1)+2) div (2*n-(-1)^n+3))-((n*2^(n+1)-2) div (2*n-(-1)^n+3)): n in [0..100]];
    
  • Mathematica
    a[n_] := Floor[(n*2^(n + 1) + 2)/(2*n - (-1)^n + 3)] - Floor[(n*2^(n + 1) - 2)/(2*n - (-1)^n + 3)]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Apr 20 2017 *)
  • PARI
    for(n=0,50, print1(floor((n*2^(n+1)+2)/(2*n-(-1)^n+3)) - floor((n*2^(n+1)-2)/(2*n-(-1)^n+3)), ", ")) \\ G. C. Greubel, Apr 20 2017

Extensions

Definition corrected by R. J. Mathar, Dec 02 2016

A340841 Decimal expansion of Sum_{n>=0} 1/(n*2^n + 1).

Original entry on oeis.org

1, 5, 1, 0, 6, 3, 7, 4, 4, 8, 1, 3, 0, 9, 5, 4, 8, 5, 2, 8, 4, 6, 1, 9, 7, 4, 9, 6, 0, 8, 0, 2, 4, 5, 6, 9, 4, 0, 3, 2, 0, 9, 4, 0, 5, 2, 9, 8, 6, 9, 2, 4, 1, 1, 8, 6, 9, 7, 0, 7, 5, 6, 4, 8, 2, 3, 4, 2, 2, 6, 6, 3, 3, 2, 2, 3, 7, 5, 9, 7, 6, 7, 6, 5, 1, 9, 8, 4
Offset: 1

Views

Author

Marco Ripà, Jan 23 2021

Keywords

Comments

This constant is the sum of reciprocals of Cullen numbers.

Examples

			1.5106374481309548528461974960802456940320940529869241186970756482342266...
		

Crossrefs

Cf. A002064.

Programs

  • Mathematica
    First[RealDigits[NSum[1/(n*2^n+1), {n, 0, Infinity}, NSumTerms -> 100, Method -> {"NIntegrate", "MaxRecursion" -> 10}, WorkingPrecision -> 100]]] (* Stefano Spezia, Jan 24 2021 *)
  • PARI
    suminf(n=0, 1/(n*2^n + 1)) \\ Michel Marcus, Jan 24 2021

Formula

Equals Sum_{n>=0} 1/A002064(n).

A367010 a(n) is the sum of the divisors of n*2^n + 1.

Original entry on oeis.org

1, 4, 13, 31, 84, 192, 576, 1344, 2736, 5040, 13680, 24276, 56000, 153842, 308416, 538920, 1110276, 2909040, 5495040, 14446080, 31374720, 45955008, 106119552, 233997312, 527587200, 1184932800, 3247522560, 4365239040, 7784309910, 16265125632, 36250560000
Offset: 0

Views

Author

Sean A. Irvine, Oct 31 2023

Keywords

Comments

The numbers n*2^n+1 are called Cullen numbers.

Crossrefs

Programs

Formula

a(n) = sigma(n*2^n + 1) = A000203(A002064(n)).

A373398 Triangle read by rows: T(n, k) = number of k-element subobjects of an n-element set in the category of relations, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 9, 1, 1, 15, 55, 25, 1, 1, 31, 285, 395, 65, 1, 1, 63, 1351, 5045, 2555, 161, 1, 1, 127, 6069, 56931, 78685, 15211, 385, 1, 1, 255, 26335, 592725, 2091171, 1101021, 85099, 897, 1, 1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1
Offset: 0

Views

Author

Keith J. Bauer, Jun 03 2024

Keywords

Comments

A subobject of an object A is an object S equipped with a monomorphism S -> A, up to isomorphism in the category of objects equipped with such morphisms. Objects in the category of relations are sets, morphisms are relations, and composition is relation composition.
Objects and morphisms in Rel can be re-characterized as free complete join-semilattices (the power set of a set with join being union) and join-equivariant maps, respectively. Therefore, subobjects in Rel can be re-characterized as injective n X k matrices of truth values. Because every injective matrix of truth values can be shown to have pivots, subobjects can be counted via Schubert cells and this results in a family of generating functions describing the entire triangle. Short proof: if a monomorphism does not have a row consisting of all 0's except for one column in particular, then consider where it sends the column vector containing all 1's and the column vector containing all 1's but with the corresponding row flipped to 0. It cannot possibly send these vectors to two different vectors. (Here 0 and 1 represent false and true, respectively. Note that addition is logical "or" and multiplication is logical "and".)
Because Rel is self-dual, this sequence also counts quotient objects.
Entries not in the triangle's range are equal to 0 because there is no monomorphism from a k-element set to an n-element set when k > n.
All monomorphisms in Rel are regular, i.e., the equalizer of a pair of morphisms. In some categories, subobjects are taken to only be regular monomorphisms, or are at least distinguished; for example, a normal subgroup is (the domain of) a regular monomorphism in the category of groups. Because all monomorphisms in Rel are regular, there is no ambiguity in what a subobject in Rel is. See the link for a proof of this fact.

Examples

			There are 9 2-element subobjects of a 3-element set in Rel. As truth matrices:
  [1 0] [1 0] [0 0] [1 0] [0 1] [0 1] [1 1] [1 0] [1 0]
  [0 1] [0 0] [1 0] [0 1] [1 0] [0 1] [1 0] [1 1] [0 1]
  [0 0] [0 1] [0 1] [0 1] [0 1] [1 0] [0 1] [0 1] [1 1]
To convert to relations, note that each entry corresponds to whether
  [(1,1) (2,1)]
  [(1,2) (2,2)]
  [(1,3) (2,3)]
is in the relation.
Triangle starts:
  1,
  1,   1,
  1,   3,      1,
  1,   7,      9,       1,
  1,  15,     55,      25,        1,
  1,  31,    285,     395,       65,        1,
  1,  63,   1351,    5045,     2555,      161,        1,
  1, 127,   6069,   56931,    78685,    15211,      385,      1,
  1, 255,  26335,  592725,  2091171,  1101021,    85099,    897,    1,
  1, 511, 111645, 5834515, 50334765, 67590387, 14169405, 454315, 2049, 1,
  ...
		

Crossrefs

T(n, 0) = A000012(n).
T(n, 1) = A000225(n).
T(n, 2) = A016269(n - 2).
T(n, 3) = A028130(n - 3).
T(n, n) = A000012(n).
T(n, n - 1) = A002064(n - 1).
Analogous sequence in the category Set: A007318.

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1 / (1 - 2^k* x)) * Product[1 / (1 - (2^k - 2^i) * x),{i,0,k-1}],{x,0,n}]; Table[T[n-k,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Jun 04 2024 *)
  • Sage
    dim = 10
    def getGF(n):
        R. = PowerSeriesRing(ZZ, 'x', dim)
        f = 1 / (1 - 2^n * x)
        for k in range(n):
            f = f / (1 - (2^n - 2^k) * x)
        return f
    for n in range(dim):
        print([getGF(k).list()[n - k] for k in range(n + 1)])

Formula

G.f.: Sum_{n>=0} T(n + k, k) * x^n = (1 / (1 - 2^k * x)) * Product_{i=0..k-1} (1 / (1 - (2^k - 2^i) * x)).

A382887 Numbers k such that (k*2^d + 1)*(d*2^k + 1) is semiprime for some divisor d of k.

Original entry on oeis.org

1, 2, 8, 12, 30, 51, 63, 141, 201, 209, 534, 4713, 5795, 6611, 7050, 18496, 24105, 32292, 32469, 52782, 59656, 80190, 90825
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 07 2025

Keywords

Comments

a(24) > 10^5. - Michael S. Branicky, Apr 08 2025

Examples

			12 is in this sequence because (12*2^3 + 1)*(3*2^12 + 1) = 97*12289 is semiprime for divisor 3 of 12.
		

Crossrefs

Supersequence of A005849.

Programs

  • Magma
    [n: n in [1..1000] | not #[d: d in Divisors(n) | IsPrime(d*2^n+1) and IsPrime(n*2^d+1)] eq 0];
    
  • PARI
    isok(k) = fordiv(k, d, if (ispseudoprime(k*2^d+1) && ispseudoprime(d*2^k+1), return(1))); \\ Michel Marcus, Apr 16 2025
  • Python
    from itertools import count, islice
    from sympy import isprime, divisors
    def A382887_gen(): # generator of terms
        yield from filter(lambda k:any(isprime((k<A382887_list = list(islice(A382887_gen(),10)) # Chai Wah Wu, Apr 15 2025
    

Extensions

a(10) inserted and a(15)-a(23) from Michael S. Branicky, Apr 08 2025

A086093 a(n) = 3^n + 2*n*4^(n-1).

Original entry on oeis.org

1, 5, 25, 123, 593, 2803, 13017, 59531, 268705, 1199331, 5301929, 23245819, 101194737, 437801939, 1883831161, 8067412587, 34402785089, 146158028227, 618862711113, 2612502377435, 10998603062161, 46189948719795, 193545427548185, 809334701221963, 3377982150064353
Offset: 0

Views

Author

Paul Barry, Jul 10 2003

Keywords

Comments

Binomial transform of A084859. Second binomial transform of Cullen numbers A002064.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 6*x + 10*x^2)/((1 - 3*x)*(1 - 4*x)^2), {x, 0, 30}], x] (* Wesley Ivan Hurt, Oct 30 2022 *)

Formula

G.f.: (1-6*x+10*x^2)/((1-3*x)*(1-4*x)^2).
a(n) = 11*a(n-1) - 40*a(n-2) + 48*a(n-3). - Wesley Ivan Hurt, Oct 30 2022

Extensions

More terms from Wesley Ivan Hurt, Oct 30 2022

A119865 Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 9, 6, 1, 8, 25, 26, 10, 1, 16, 65, 95, 60, 15, 1, 32, 161, 308, 279, 120, 21, 1, 64, 385, 917, 1099, 693, 217, 28, 1, 128, 897, 2566, 3856, 3256, 1526, 364, 36, 1
Offset: 0

Views

Author

Philippe Deléham, Jul 31 2006

Keywords

Examples

			Triangle begins:
1;
1, 1;
2, 3, 1;
4, 9, 6, 1;
8, 25, 26, 10, 1;
16, 65, 95, 60, 15, 1;
32, 161, 308, 279, 120, 21, 1;
64, 385, 917, 1099, 693, 217, 28, 1;
128, 897, 2566, 3856, 3256, 1526, 364, 36, 1;
		

Crossrefs

Cf. Diagonals : A011782, A002064 ; A000012, A000217.

Formula

Sum_{k =0..n}T(n,k)= A087944(n).
Sum_{k=0..n}(-1)^k*2^(n-k)*T(n,k)= n^2-n+1= A002061(n).
Sum_{k=0..n}(-1)^k*T(n,k)=0^n= A000007(n).
G.f.: (1-2*x-2*x*y++x^2+x^2*y+x^2*y^2)/(1-3*x-3*x*y+2*x^2+4*x^2*y+3*x^2*y^2-x^3*y^2-x^3*y^3). - Philippe Deléham, Nov 09 2013
T(n,k) = 3*T(n-1,k) + 3*T(n-1,k-1) - 2*T(n-2,k) - 4*T(n-2,k-1) - 3*T(n-2,k-2) + T(n-3,k-2) + T(n-3,k-3), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 3, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013
Previous Showing 61-70 of 74 results. Next