cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A218221 G.f.: 1/(1-x/(1-4*x/(1-10*x/(1-20*x/(1-35*x/(1-56*x/(1-...))))))), a continued fraction.

Original entry on oeis.org

1, 1, 5, 65, 1725, 81225, 6181125, 710984625, 117537778125, 26848583825625, 8210318193703125, 3275053250628290625, 1667519951972905828125, 1063947235962694359515625, 837322677987349287566953125, 801714108831393845941434140625
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 65*x^3 + 1725*x^4 + 81225*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Binomial[Range[nmax + 1]+2,3]*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
    eulerCF[f_, len_] := Module[{g}, g[len - 1] = 1;
    g[k_] := g[k] = 1 - f[k]/(f[k] - 2/g[k + 1]); CoefficientList[g[0] + O[x]^len, x]];
    A218221List[len_] := eulerCF[(1/3) x (# + 1) (# + 2) (# + 3) &, len];
    A218221List[16] (* Peter Luschny, Aug 09 2019 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)*(n-k+2)*(n-k+3)/6*x*CF)); polcoeff(CF, n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) == 0 (mod 5) for n>1.
a(n) == 0 (mod 3) for n>3.
G.f.: Q(0), where Q(k) = 1 - x*(k+1)*(k+2)*(k+3)/(x*(k+1)*(k+2)*(k+3) - 6/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013
a(n) ~ c * d^n * (n!)^3 * n^(5/2), where d = 32*sqrt(3)*Pi^3 / Gamma(1/3)^9 = 0.241821816937867322064737317131437... and c = 2^(15/2) * 3^(11/4) * Pi^4 / Gamma(1/3)^(27/2) = 0.60382458700655692263505976... - Vaclav Kotesovec, Aug 25 2017, updated Mar 16 2024

A285484 G.f.: 1/(1 + x/(1 + x^3/(1 + x^6/(1 + x^10/(1 + x^15/(1 + ... + x^(k*(k+1)/2)/(1 + ...))))))), a continued fraction.

Original entry on oeis.org

1, -1, 1, -1, 2, -3, 4, -6, 9, -13, 18, -26, 38, -54, 77, -111, 160, -229, 328, -472, 679, -974, 1398, -2010, 2888, -4146, 5954, -8555, 12289, -17647, 25346, -36410, 52297, -75109, 107881, -154961, 222574, -319679, 459167, -659528, 947295, -1360612, 1954295, -2807031, 4031809, -5790982
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2017

Keywords

Examples

			G.f.: A(x) = 1 - x + x^2 - x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 6*x^7 + 9*x^8 - 13*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[1/(1 + ContinuedFractionK[x^(k (k + 1)/2), 1, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * c * d^n, where d = 1.43632929358192465555987661527... and c = 0.4856490524128736949896673... - Vaclav Kotesovec, Aug 26 2017

A365674 Triangle read by rows. T(n, k) = ((n - k + 1)*(n - k + 2)/2) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, T(n, 0) = 1 and T(n, n) = T(n, n - 1) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 10, 34, 34, 1, 20, 154, 496, 496, 1, 35, 504, 3520, 11056, 11056, 1, 56, 1344, 16960, 112816, 349504, 349504, 1, 84, 3108, 63580, 748616, 4841200, 14873104, 14873104, 1, 120, 6468, 199408, 3739736, 42238560, 268304464, 819786496, 819786496
Offset: 0

Views

Author

Peter Luschny, Sep 30 2023

Keywords

Comments

This triangle is associated to the case n = 3 of A365673 and has as weight function the triangular numbers A000217. The numbers on its main diagonal are the reduced tangent numbers A002105. For details see A365673.

Examples

			[0] 1;
[1] 1,  1;
[2] 1,  4,    4;
[3] 1, 10,   34,    34;
[4] 1, 20,  154,   496,    496;
[5] 1, 35,  504,  3520,  11056,   11056;
[6] 1, 56, 1344, 16960, 112816,  349504,   349504;
[7] 1, 84, 3108, 63580, 748616, 4841200, 14873104, 14873104;
		

Crossrefs

Cf. A002105 (main diagonal), A365673 (case n=3), A000217 (weight).

Programs

  • Maple
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k - 1) else ((n - k + 1)*(n - k + 2)/2) * T( n, k - 1) + T( n - 1, k) fi fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..8);

A094346 Another version of triangular array in A036970: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 3, 8, 6, 0, 17, 54, 60, 24, 0, 155, 556, 762, 480, 120, 0, 2073, 8146, 12840, 10248, 4200, 720, 0, 38227, 161424, 282078, 263040, 139440, 40320, 5040, 0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320
Offset: 0

Views

Author

Philippe Deléham, Jun 08 2004, Jun 13 2007

Keywords

Comments

Diagonals: A000007, A001469, A005440; A000182, A005990. Row sums: A001469.

Examples

			Triangle begins:
1;
0, 1;
0, 1, 2;
0, 3, 8, 6;
0, 17, 54, 60, 24;
0, 155, 556, 762, 480, 120;
0, 2073, 8146, 12840, 10248, 4200, 720;
0, 38227, 161424, 282078, 263040, 139440, 40320, 5040;
0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320; ...
		

Crossrefs

Programs

  • Mathematica
    G[_, 1] = 1;
    G[x_, n_] := G[x, n] = (x+1)^2 G[x+1, n-1] - x^2 G[x, n-1] // Expand;
    row[0] = {1};
    row[n_] := CoefficientList[x G[x, n], x];
    Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Aug 17 2018 *)
  • PARI
    {T(n, k) = local( A = x); if( k<0 || k>n, 0, for( j = 1, n, A = x^2 * ( subst(A, x, x+1) - A)); polcoeff( A, k+1))} /* Michael Somos, Apr 10 2011 */

Formula

For n>=1, Sum_{k =1..n} T(n, k)*x^(k-1) = G(x, n), n-th Gandhi polynomial; the Gandhi polynomials are defined by G(x, n) = (x+1)^2*G(x+1, n-1) - x^2*G(x, n-1), G(x, 1) = 1. Sum_{k =0..n} T(n, k)*2^(2n-k) = A000182(n+1), tangent numbers. Sum_{k =0..n} T(n, k) = A001469(n+1), Genocchi numbers of first kind.
Sum_{k = 0..n} T(n, k)*2^(n-k) = A002105(n+1). - Philippe Deléham, Jun 10 2004

A096078 Triangle read by rows: T(n,k) = (k+1)*T(n-1,k) + (n-k+1)*T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 11, 34, 34, 1, 26, 180, 496, 496, 1, 57, 768, 4288, 11056, 11056, 1, 120, 2904, 28768, 141584, 349504, 349504, 1, 247, 10194, 166042, 1372088, 6213288, 14873104, 14873104, 1, 502, 34096, 868744, 11204160, 82096368, 350400832
Offset: 0

Views

Author

Paul Boddington, Jul 22 2004

Keywords

Examples

			Table begins:
  1
  1 1
  1 4 4
  1 11 34 34
  1 26 180 496 496
  1 57 768 4288 11056 11056
		

Crossrefs

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, 1] := 2^(n+1) - n - 2; T[n_, n_] := 2^(n+1)*(2^(2n+2) - 1)*Abs[ BernoulliB[2n + 2]]/ (n + 1); T[n_, k_] := (k + 1)T[n - 1, k] + (n - k + 1)T[n, k - 1]; Flatten[ Table[ T[n, k], {n, 0, 8}, {k, 0, n}]] (* Robert G. Wilson v, Jul 23 2004 *)

Formula

T(n-1, 1) given by Eulerian numbers, 2^n - n - 1 (A000295). T(n-1, n-1) given by 2^n*(2^{2n} - 1)*|B_{2n}|/n, B_n = Bernoulli numbers (A002105).

Extensions

Edited and extended by Robert G. Wilson v, Jul 23 2004

A131638 Increasing binary trees having exactly two vertices with outdegree 1.

Original entry on oeis.org

1, 11, 180, 4288, 141584, 6213288, 350400832, 24718075136, 2133652515072, 221311262045440, 27166907582280704, 3895974311462313984, 645512064907811491840, 122381396964887716078592, 26325690425815766552887296, 6377608610246241663568248832
Offset: 1

Views

Author

Wenjin Woan, Oct 03 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[1/2*(-((x*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]) /Sqrt[2]) + 3*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]^2), {x, 0, n}], {n, 2, 40, 2}] (* Vaclav Kotesovec after Michel Marcus, Sep 25 2013 *)
  • PARI
    lista(m) = { default(realprecision, 30); x = y + O(y^m); egf = (3*tan(x/sqrt(2))^2/cos(x/sqrt(2))^2-x*tan(x/sqrt(2))/(sqrt(2)*cos(x/sqrt(2))^2))/2; forstep (n=2, m, 2, print1(round(n!*polcoeff(egf, n, y)), ", "));}  \\ Michel Marcus, Mar 03 2013

Formula

E.g.f.: (3*sec(x/sqrt(2))^2*tan(x/sqrt(2))^2-x*sec(x/sqrt(2))^2*tan(x/sqrt(2))/(sqrt(2)))/2. - Michel Marcus, Mar 03 2013
a(n) ~ (2*n)! * 2^(n+6)*n^3/Pi^(2*n+4). - Vaclav Kotesovec, Sep 25 2013
From Klaus K Haverkamp, Jul 02 2023: (Start)
a(n) = (A002105(n+2) - (n+1)*A002105(n+1))/2.
a(n) = A094503(2n+1,n). (End)

Extensions

More terms from Michel Marcus, Mar 03 2013

A320842 Regular triangle whose rows are the coefficients of the Dominici expansion of f(t,x) = (1/2)*(1 - t^2)^(-x) with respect to t.

Original entry on oeis.org

1, 7, 3, 127, 123, 30, 4369, 6822, 3579, 630, 243649, 532542, 439899, 162630, 22680, 20036983, 56717781, 64697499, 37155267, 10735470, 1247400, 2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200, 343141433761, 1427877062076, 2563294235106, 2572662311496, 1558544277681, 569674791180, 116270210700, 10216206000
Offset: 1

Views

Author

Matthew Miller, Dec 11 2018

Keywords

Comments

It appears that the first column (7, 127, 4369, ...) is from the sequence A002067.
It appears that the diagonal (3, 30, 630, ...) is from the sequence A007019.
It appears as though the unsigned row sum (10, 280, 15400, ...) is from the sequence A025035.
It appears as though the alternating sign row sum (sum(7, -3) = 4, sum(-127, 123, -30) = -34, ...) is from the sequence A002105.
This triangular array arises as the coefficients from terms in the inverse expansion of the function f(t,x) = (1/2)*(1 - t^2)^(-x) with respect to t evaluated at t = 0 for even values of the operation, using a method of Dominici's (nested derivatives, referenced below).
Without proof, appears to be related to computing the 'critical t-value' of Student's t-distribution. (conj.) Critical t-value t_(v, beta) is equal to: sqrt((v/(1-S^2)) - v) where S = (1/2)*Sum_{k>=1} (D^(2*k-2)[f](0)*(1/(2*k-1)!)*(B(1/2, v/2)*(1-2*beta))^(2*k-1)); where (1 - beta) is the confidence interval 'atta' (for a one-tailed distribution such that 'cumulative probability' = t_atta, where beta = 1-atta), x = 1 - (v/2), v: degrees of freedom, B(1/2, v/2) = gamma(1/2)*gamma(v/2)/gamma(1/2 + v/2), D^(2*k - 2)[f](0) is a polynomial function of 'x' whose coefficients are the terms of this sequence as computed using a method of Dominici's on f(t,x) with respect to t (referenced below).

Examples

			Given D^k[f]_(b) = (d/dt [f(t)*D^(k-1)[f](t)])_t = b where D^0[f](b) = 1, then for f(t,x) = (1/2)*(1 - t^2)^(-x) where f(0) = 1/2 one obtains: D^2[f]_(0) = -x/2, D^4[f]_(0) = (x/4)*(7*x - 3), D^6[f]_(0) = -(x/8)*(127*x^2 - 123*x + 30), etc., where b is an arbitrary constant.
Triangle begins:
           1;
           7,          3;
         127,        123,          30;
        4369,       6822,        3579,        630;
      243649,     532542,      439899,     162630,      22680;
    20036983,   56717781,    64697499,   37155267,   10735470,   1247400;
  2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200;
         ...
		

Crossrefs

A356900 a(n) = P(n, 1/2) where P(n, x) = x^(-n)*Sum_{k=0..n} A241171(n, k)*x^k.

Original entry on oeis.org

1, 1, 8, 154, 5552, 321616, 27325088, 3200979664, 494474723072, 97390246272256, 23820397371219968, 7083386168647642624, 2516691244849530785792, 1052914814802404260765696, 512347915163742179541659648, 286902390859642414913802102784, 183187476890368376930869730803712
Offset: 0

Views

Author

Peter Luschny, Sep 03 2022

Keywords

Comments

Other special values of this Euler type polynomials are: P(n, -1) = A000364(n); P(n, -1/2) = A002105(n); P(n, 1) = A094088(n), where we always make the assumption that the offset of the sequences is 0. A partition refinement of Joffe's triangle A241171 is A327022.

Crossrefs

Programs

  • Maple
    a := n -> 2^n*add(A241171(n, k)*(1/2)^k, k = 0..n):
    seq(a(n), n = 0..16);
  • SageMath
    # Using function PtransMatrix from A269941.
    def E(n, v):
        eulr = lambda n: 1 / ((2 * n - 1) * (2 * n))
        norm = lambda n, k: (1 / v)^n * factorial(2 * n)
        P = PtransMatrix(n, eulr, norm)
        return [(-1)^j * sum([v^k * P[j][k] for k in range(j + 1)]) for j in range(n)]
    A356900List = lambda n: E(n, -1/2); print(A356900List(17))
    # A002105List = lambda n: E(n, 1/2) returns the reduced tangent numbers A002105.
Previous Showing 41-48 of 48 results.