A218221
G.f.: 1/(1-x/(1-4*x/(1-10*x/(1-20*x/(1-35*x/(1-56*x/(1-...))))))), a continued fraction.
Original entry on oeis.org
1, 1, 5, 65, 1725, 81225, 6181125, 710984625, 117537778125, 26848583825625, 8210318193703125, 3275053250628290625, 1667519951972905828125, 1063947235962694359515625, 837322677987349287566953125, 801714108831393845941434140625
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 65*x^3 + 1725*x^4 + 81225*x^5 +...
-
nmax = 20; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[Binomial[Range[nmax + 1]+2,3]*x]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
eulerCF[f_, len_] := Module[{g}, g[len - 1] = 1;
g[k_] := g[k] = 1 - f[k]/(f[k] - 2/g[k + 1]); CoefficientList[g[0] + O[x]^len, x]];
A218221List[len_] := eulerCF[(1/3) x (# + 1) (# + 2) (# + 3) &, len];
A218221List[16] (* Peter Luschny, Aug 09 2019 *)
-
{a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-(n-k+1)*(n-k+2)*(n-k+3)/6*x*CF)); polcoeff(CF, n)}
for(n=0,20,print1(a(n),", "))
A285484
G.f.: 1/(1 + x/(1 + x^3/(1 + x^6/(1 + x^10/(1 + x^15/(1 + ... + x^(k*(k+1)/2)/(1 + ...))))))), a continued fraction.
Original entry on oeis.org
1, -1, 1, -1, 2, -3, 4, -6, 9, -13, 18, -26, 38, -54, 77, -111, 160, -229, 328, -472, 679, -974, 1398, -2010, 2888, -4146, 5954, -8555, 12289, -17647, 25346, -36410, 52297, -75109, 107881, -154961, 222574, -319679, 459167, -659528, 947295, -1360612, 1954295, -2807031, 4031809, -5790982
Offset: 0
G.f.: A(x) = 1 - x + x^2 - x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 6*x^7 + 9*x^8 - 13*x^9 + ...
-
nmax = 45; CoefficientList[Series[1/(1 + ContinuedFractionK[x^(k (k + 1)/2), 1, {k, 1, nmax}]), {x, 0, nmax}], x]
A365674
Triangle read by rows. T(n, k) = ((n - k + 1)*(n - k + 2)/2) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, T(n, 0) = 1 and T(n, n) = T(n, n - 1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 1, 10, 34, 34, 1, 20, 154, 496, 496, 1, 35, 504, 3520, 11056, 11056, 1, 56, 1344, 16960, 112816, 349504, 349504, 1, 84, 3108, 63580, 748616, 4841200, 14873104, 14873104, 1, 120, 6468, 199408, 3739736, 42238560, 268304464, 819786496, 819786496
Offset: 0
[0] 1;
[1] 1, 1;
[2] 1, 4, 4;
[3] 1, 10, 34, 34;
[4] 1, 20, 154, 496, 496;
[5] 1, 35, 504, 3520, 11056, 11056;
[6] 1, 56, 1344, 16960, 112816, 349504, 349504;
[7] 1, 84, 3108, 63580, 748616, 4841200, 14873104, 14873104;
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k - 1) else ((n - k + 1)*(n - k + 2)/2) * T( n, k - 1) + T( n - 1, k) fi fi end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
A094346
Another version of triangular array in A036970: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 3, 8, 6, 0, 17, 54, 60, 24, 0, 155, 556, 762, 480, 120, 0, 2073, 8146, 12840, 10248, 4200, 720, 0, 38227, 161424, 282078, 263040, 139440, 40320, 5040, 0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 3, 8, 6;
0, 17, 54, 60, 24;
0, 155, 556, 762, 480, 120;
0, 2073, 8146, 12840, 10248, 4200, 720;
0, 38227, 161424, 282078, 263040, 139440, 40320, 5040;
0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320; ...
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914
- Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. (Has a signed version of this triangle, see p. 1).
-
G[_, 1] = 1;
G[x_, n_] := G[x, n] = (x+1)^2 G[x+1, n-1] - x^2 G[x, n-1] // Expand;
row[0] = {1};
row[n_] := CoefficientList[x G[x, n], x];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Aug 17 2018 *)
-
{T(n, k) = local( A = x); if( k<0 || k>n, 0, for( j = 1, n, A = x^2 * ( subst(A, x, x+1) - A)); polcoeff( A, k+1))} /* Michael Somos, Apr 10 2011 */
A096078
Triangle read by rows: T(n,k) = (k+1)*T(n-1,k) + (n-k+1)*T(n,k-1).
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 1, 11, 34, 34, 1, 26, 180, 496, 496, 1, 57, 768, 4288, 11056, 11056, 1, 120, 2904, 28768, 141584, 349504, 349504, 1, 247, 10194, 166042, 1372088, 6213288, 14873104, 14873104, 1, 502, 34096, 868744, 11204160, 82096368, 350400832
Offset: 0
Table begins:
1
1 1
1 4 4
1 11 34 34
1 26 180 496 496
1 57 768 4288 11056 11056
-
T[n_, 0] := 1; T[n_, 1] := 2^(n+1) - n - 2; T[n_, n_] := 2^(n+1)*(2^(2n+2) - 1)*Abs[ BernoulliB[2n + 2]]/ (n + 1); T[n_, k_] := (k + 1)T[n - 1, k] + (n - k + 1)T[n, k - 1]; Flatten[ Table[ T[n, k], {n, 0, 8}, {k, 0, n}]] (* Robert G. Wilson v, Jul 23 2004 *)
A131638
Increasing binary trees having exactly two vertices with outdegree 1.
Original entry on oeis.org
1, 11, 180, 4288, 141584, 6213288, 350400832, 24718075136, 2133652515072, 221311262045440, 27166907582280704, 3895974311462313984, 645512064907811491840, 122381396964887716078592, 26325690425815766552887296, 6377608610246241663568248832
Offset: 1
-
Table[n!*SeriesCoefficient[1/2*(-((x*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]) /Sqrt[2]) + 3*Sec[x/Sqrt[2]]^2 *Tan[x/Sqrt[2]]^2), {x, 0, n}], {n, 2, 40, 2}] (* Vaclav Kotesovec after Michel Marcus, Sep 25 2013 *)
-
lista(m) = { default(realprecision, 30); x = y + O(y^m); egf = (3*tan(x/sqrt(2))^2/cos(x/sqrt(2))^2-x*tan(x/sqrt(2))/(sqrt(2)*cos(x/sqrt(2))^2))/2; forstep (n=2, m, 2, print1(round(n!*polcoeff(egf, n, y)), ", "));} \\ Michel Marcus, Mar 03 2013
A320842
Regular triangle whose rows are the coefficients of the Dominici expansion of f(t,x) = (1/2)*(1 - t^2)^(-x) with respect to t.
Original entry on oeis.org
1, 7, 3, 127, 123, 30, 4369, 6822, 3579, 630, 243649, 532542, 439899, 162630, 22680, 20036983, 56717781, 64697499, 37155267, 10735470, 1247400, 2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200, 343141433761, 1427877062076, 2563294235106, 2572662311496, 1558544277681, 569674791180, 116270210700, 10216206000
Offset: 1
Given D^k[f]_(b) = (d/dt [f(t)*D^(k-1)[f](t)])_t = b where D^0[f](b) = 1, then for f(t,x) = (1/2)*(1 - t^2)^(-x) where f(0) = 1/2 one obtains: D^2[f]_(0) = -x/2, D^4[f]_(0) = (x/4)*(7*x - 3), D^6[f]_(0) = -(x/8)*(127*x^2 - 123*x + 30), etc., where b is an arbitrary constant.
Triangle begins:
1;
7, 3;
127, 123, 30;
4369, 6822, 3579, 630;
243649, 532542, 439899, 162630, 22680;
20036983, 56717781, 64697499, 37155267, 10735470, 1247400;
2280356863, 7959325221, 11656842609, 9165745647, 4079027880, 973580580, 97297200;
...
A356900
a(n) = P(n, 1/2) where P(n, x) = x^(-n)*Sum_{k=0..n} A241171(n, k)*x^k.
Original entry on oeis.org
1, 1, 8, 154, 5552, 321616, 27325088, 3200979664, 494474723072, 97390246272256, 23820397371219968, 7083386168647642624, 2516691244849530785792, 1052914814802404260765696, 512347915163742179541659648, 286902390859642414913802102784, 183187476890368376930869730803712
Offset: 0
-
a := n -> 2^n*add(A241171(n, k)*(1/2)^k, k = 0..n):
seq(a(n), n = 0..16);
-
# Using function PtransMatrix from A269941.
def E(n, v):
eulr = lambda n: 1 / ((2 * n - 1) * (2 * n))
norm = lambda n, k: (1 / v)^n * factorial(2 * n)
P = PtransMatrix(n, eulr, norm)
return [(-1)^j * sum([v^k * P[j][k] for k in range(j + 1)]) for j in range(n)]
A356900List = lambda n: E(n, -1/2); print(A356900List(17))
# A002105List = lambda n: E(n, 1/2) returns the reduced tangent numbers A002105.
Comments