cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 165 results. Next

A384285 Decimal expansion of the volume of a gyroelongated pentagonal rotunda with unit edge.

Original entry on oeis.org

1, 3, 6, 6, 7, 0, 5, 0, 8, 4, 3, 6, 7, 1, 6, 9, 6, 9, 3, 2, 1, 2, 3, 5, 3, 0, 8, 9, 9, 2, 3, 3, 2, 8, 6, 5, 6, 5, 4, 0, 0, 2, 6, 4, 3, 6, 6, 9, 7, 8, 9, 8, 4, 4, 5, 2, 0, 1, 7, 4, 8, 2, 0, 5, 9, 2, 2, 8, 3, 2, 4, 2, 3, 2, 9, 5, 6, 5, 7, 3, 8, 8, 1, 5, 9, 0, 1, 0, 0, 2
Offset: 2

Views

Author

Paolo Xausa, May 29 2025

Keywords

Comments

The gyroelongated pentagonal rotunda is Johnson solid J_25.

Examples

			13.667050843671696932123530899233286565400264...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(45 + 17*# + 10*Sqrt[2*(Sqrt[650 + 290*#] - # - 1)])/12 & [Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J25", "Volume"], 10, 100]]

Formula

Equals (45 + 17*sqrt(5) + 10*sqrt(2*(sqrt(650 + 290*sqrt(5)) - sqrt(5) - 1)))/12 = (45 + 17*A002163 + 10*sqrt(2*(sqrt(650 + 290*A002163) - A002163 - 1)))/12.
Equals the largest real root of 1679616*x^8 - 50388480*x^7 + 603262080*x^6 - 3520972800*x^5 + 5215460400*x^4 + 4128624000*x^3 - 8894943000*x^2 + 3881385000*x - 424924375.

A384286 Decimal expansion of the surface area of a gyroelongated pentagonal rotunda with unit edge.

Original entry on oeis.org

3, 1, 0, 0, 7, 4, 5, 4, 3, 0, 3, 2, 3, 8, 5, 1, 4, 7, 4, 4, 4, 3, 5, 6, 4, 5, 8, 6, 5, 7, 1, 7, 9, 7, 4, 9, 0, 8, 5, 3, 2, 0, 3, 9, 7, 8, 2, 4, 8, 3, 5, 2, 5, 7, 5, 3, 2, 5, 9, 0, 1, 1, 2, 1, 3, 9, 6, 9, 8, 6, 9, 8, 0, 1, 3, 0, 7, 5, 2, 4, 9, 6, 2, 2, 3, 9, 7, 2, 8, 1
Offset: 2

Views

Author

Paolo Xausa, May 30 2025

Keywords

Comments

The gyroelongated pentagonal rotunda is Johnson solid J_25.

Examples

			31.00745430323851474443564586571797490853203978248...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(15*Sqrt[3] + Sqrt[650 + 290*Sqrt[5]])/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J25", "SurfaceArea"], 10, 100]]

Formula

Equals (15*sqrt(3) + sqrt(650 + 290*sqrt(5)))/2 = (15*A002194 + sqrt(650 + 290*A002163))/2.
Equals the largest root of 256*x^8 - 339200*x^6 + 98924000*x^4 - 9264250000*x^2 + 176295015625.

A384871 Decimal expansion of the volume of a pentagonal orthocupolarotunda with unit edge.

Original entry on oeis.org

9, 2, 4, 1, 8, 0, 8, 2, 8, 6, 4, 5, 7, 8, 9, 5, 2, 0, 0, 8, 5, 2, 4, 4, 5, 1, 4, 3, 1, 9, 0, 1, 5, 8, 8, 2, 3, 8, 3, 4, 6, 2, 1, 5, 8, 2, 5, 2, 4, 0, 1, 1, 9, 2, 5, 5, 6, 4, 3, 6, 9, 2, 6, 1, 2, 7, 1, 9, 1, 8, 5, 9, 5, 0, 7, 8, 7, 6, 0, 2, 0, 7, 1, 1, 3, 3, 6, 3, 3, 5
Offset: 1

Views

Author

Paolo Xausa, Jun 11 2025

Keywords

Comments

The pentagonal orthocupolarotunda is Johnson solid J_32.
Also the volume of a pentagonal gyrocupolarotunda (Johnson solid J_33) with unit edge.

Examples

			9.2418082864578952008524451431901588238346215825240...
		

Crossrefs

Cf. A384872 (surface area).

Programs

  • Mathematica
    First[RealDigits[5*(11 + 5*Sqrt[5])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J32", "Volume"], 10, 100]]

Formula

Equals (5/12)*(11 + 5*sqrt(5)) = (5/12)*(11 + 5*A002163).
Equals the largest root of 36*x^2 - 330*x - 25.

A385802 Decimal expansion of the volume of a parabiaugmented dodecahedron with unit edge.

Original entry on oeis.org

8, 2, 6, 6, 1, 2, 4, 6, 2, 5, 4, 1, 6, 2, 8, 1, 1, 1, 0, 0, 8, 3, 4, 8, 5, 0, 5, 9, 3, 4, 0, 6, 7, 3, 0, 9, 8, 3, 0, 7, 8, 0, 0, 3, 2, 5, 9, 5, 4, 4, 6, 3, 8, 2, 7, 8, 2, 9, 9, 7, 8, 2, 8, 3, 2, 5, 2, 6, 2, 1, 6, 9, 7, 0, 0, 2, 6, 4, 2, 3, 1, 5, 5, 9, 3, 0, 9, 3, 0, 8
Offset: 1

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The parabiaugmented dodecahedron is Johnson solid J_59.
Also the volume of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge.

Examples

			8.266124625416281110083485059340673098307800325954...
		

Crossrefs

Cf. A385803 (surface area).

Programs

  • Mathematica
    First[RealDigits[(25 + 11*Sqrt[5])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J59", "Volume"], 10, 100]]

Formula

Equals (25 + 11*sqrt(5))/6 = (25 + 11*A002163)/6.
Equals A102769 + 2*A179552.
Equals the largest root of 9*x^2 - 75*x + 5.

A068446 Factorial expansion of sqrt(5) = Sum_{n>0} a(n)/n!.

Original entry on oeis.org

2, 0, 1, 1, 3, 1, 6, 6, 2, 3, 5, 2, 12, 1, 7, 1, 3, 10, 12, 19, 10, 18, 21, 6, 3, 10, 10, 26, 18, 0, 26, 30, 5, 21, 21, 5, 28, 34, 22, 9, 28, 32, 0, 9, 19, 20, 8, 9, 16, 43, 28, 22, 4, 40, 54, 17, 51, 55, 31, 18, 52, 37, 55, 0, 45, 61, 16, 41, 62, 53, 20, 31, 49, 63, 62, 20, 69, 1, 64
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)).

Programs

  • Magma
    [Floor(Sqrt(5))] cat [Floor(Factorial(n)*Sqrt(5)) - n*Floor(Factorial((n-1))*Sqrt(5)) : n in [2..30]]; // G. C. Greubel, Mar 21 2018
  • Mathematica
    Table[If[n==1, Floor[Sqrt[5]],Floor[n!*Sqrt[5]]-n*Floor[(n-1)!*Sqrt[5] ]], {n,1,50}] (* G. C. Greubel, Mar 21 2018 *)
  • PARI
    for(n=1,30, print1(if(n==1, floor(sqrt(5)), floor(n!*sqrt(5)) - n*floor((n-1)!*sqrt(5))), ", ")) \\ G. C. Greubel, Mar 21 2018
    
  • PARI
    A068446_vec(N=90,c=sqrt(precision(5.,N*log(N/2.4)\/2.3)))=vector(N,n, if(n>1,c=c%1*n,c)\1) \\ M. F. Hasler, Nov 27 2018
    

A165953 Decimal expansion of (5*sqrt(3) + sqrt(15))/(6*Pi).

Original entry on oeis.org

6, 6, 4, 9, 0, 8, 8, 9, 4, 2, 0, 5, 3, 2, 6, 6, 4, 3, 1, 1, 4, 4, 2, 8, 4, 4, 6, 7, 0, 8, 6, 3, 3, 7, 1, 6, 1, 6, 4, 8, 7, 6, 5, 8, 0, 5, 5, 5, 6, 9, 1, 9, 3, 8, 1, 0, 5, 7, 5, 9, 2, 6, 0, 5, 7, 2, 2, 9, 6, 4, 7, 1, 8, 1, 8, 7, 7, 3, 2, 5, 9, 7, 4, 9, 7, 0, 8, 9, 0, 0, 2, 6, 9, 2, 0, 9, 2, 5, 9, 8, 9, 8, 2, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a regular dodecahedron to the volume of the circumscribed sphere (which has circumradius a*(sqrt(3) + sqrt(15))/4 = a*(A002194 + A010472)/4, where a is the dodecahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165954. A063723 shows the order of these by size.

Examples

			0.6649088942053266431144284467086337161648765805556919381057592605722964718...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(5*Sqrt[3]+Sqrt[15])/(6*Pi),10,120][[1]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    (5*sqrt(3)+sqrt(15))/(6*Pi)

Formula

Equals (5*A002194 + A010472)/(6*A000796).
Equals (5*A002194 + A010472)*A049541/6.
Equals (10*A010527 + A010472)*A049541/6.
Equals (5 + sqrt(5))/(2*Pi*sqrt(3)).
Equals (5 + A002163)*A049541*A020760/2.

A165954 Decimal expansion of sqrt(10 + 2*sqrt(5))/(2*Pi).

Original entry on oeis.org

6, 0, 5, 4, 6, 1, 3, 8, 2, 9, 1, 2, 5, 2, 5, 5, 8, 3, 3, 8, 6, 2, 6, 5, 2, 0, 5, 1, 2, 8, 0, 4, 4, 4, 9, 0, 3, 0, 0, 8, 4, 5, 4, 0, 8, 8, 0, 1, 4, 2, 8, 8, 9, 3, 3, 2, 0, 0, 9, 3, 5, 0, 0, 0, 8, 3, 8, 2, 9, 5, 6, 8, 3, 8, 2, 0, 7, 2, 7, 2, 7, 8, 5, 3, 6, 2, 4, 2, 6, 2, 5, 9, 6, 8, 8, 1, 3, 0, 5, 1, 9, 3, 2, 4, 1
Offset: 0

Views

Author

Rick L. Shepherd, Oct 04 2009

Keywords

Comments

The ratio of the volume of a regular icosahedron to the volume of the circumscribed sphere (with circumradius a*sqrt(10 + 2*sqrt(5))/4 = a*A019881, where a is the icosahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165953. A063723 shows the order of these by size.

Examples

			0.6054613829125255833862652051280444903008454088014288933200935000838295683...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[10+2Sqrt[5]]/(2Pi),10,120][[1]] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    sqrt(10+2*sqrt(5))/(2*Pi)

Formula

sqrt(10 + 2*sqrt(5))/(2*Pi) = sqrt(10 + 2*A002163)/(2*A000796) = 2*sin(2*Pi/5)/Pi = 2*sin(A019694)/A000796 = 2*sin(72 deg)/Pi = 2*A019881/A000796 = 2*A019881*A049541 = (2/Pi)*sin(72 deg) = A060294*A019881.

A176322 Decimal expansion of sqrt(1365).

Original entry on oeis.org

3, 6, 9, 4, 5, 9, 0, 6, 4, 0, 3, 8, 2, 2, 3, 3, 1, 9, 9, 1, 6, 3, 5, 6, 1, 1, 5, 9, 9, 7, 9, 7, 1, 4, 2, 0, 5, 6, 5, 1, 5, 9, 7, 4, 2, 2, 3, 1, 7, 1, 5, 5, 8, 7, 4, 6, 3, 9, 0, 6, 4, 1, 8, 8, 8, 4, 9, 2, 6, 6, 0, 6, 6, 7, 2, 5, 1, 5, 9, 4, 7, 0, 2, 0, 9, 0, 3, 0, 4, 0, 6, 0, 5, 4, 4, 6, 5, 2, 9, 0, 3, 8, 1, 2, 5
Offset: 2

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(1365) is (repeat 1, 17, 2, 17, 1, 72) preceded by 36.

Examples

			36.94590640382233199163...
		

Crossrefs

Cf. A002194 (sqrt(3)), A002163 (sqrt(5)), A010465 (sqrt(7)), A010470 (sqrt(13)).
Cf. A176321 ((35+sqrt(1365))/14).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); Sqrt(1365); // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( sqrt(1365), 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[Sqrt[1365],10,120][[1]] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    default(realprecision, 120); sqrt(1365) \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx(sqrt(1365), digits=120) # G. C. Greubel, Nov 26 2019

Formula

Equals sqrt(3)*sqrt(5)*sqrt(7)*sqrt(13).

A200991 Decimal expansion of square root of 221/25.

Original entry on oeis.org

2, 9, 7, 3, 2, 1, 3, 7, 4, 9, 4, 6, 3, 7, 0, 1, 1, 0, 4, 5, 2, 2, 4, 0, 1, 6, 4, 2, 7, 8, 6, 2, 7, 9, 3, 3, 0, 2, 8, 9, 7, 9, 7, 1, 0, 2, 7, 4, 4, 1, 7, 2, 3, 1, 2, 1, 1, 2, 6, 1, 8, 9, 6, 2, 0, 5, 0, 3, 6, 7, 4, 6, 2, 9, 5, 6, 2, 3, 3, 5, 3, 1, 7, 2, 3, 1, 6, 7, 2, 9, 2, 0, 5, 4, 7, 9
Offset: 1

Views

Author

Alonso del Arte, Dec 06 2011

Keywords

Comments

This is the third Lagrange number, corresponding to the third Markov number (5). With multiples of the golden ration and sqrt(2) excluded from consideration, the Hurwitz irrational number theorem uses this Lagrange number to obtain very good rational approximations for irrational numbers.
Continued fraction is 2 followed by 1, 36, 3, 148, 3, 36, 1, 4 repeated.

Examples

			2.9732137494637011045224016...
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, p. 187

Crossrefs

Cf. A002163 (the first Lagrange number), A010466 (the second Lagrange number).

Programs

Formula

With m = 5 being a Markov number (A002559), L = sqrt(9 - 4/m^2).

A204188 Decimal expansion of sqrt(5)/4.

Original entry on oeis.org

5, 5, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7
Offset: 0

Views

Author

Jonathan Sondow, Jan 14 2012

Keywords

Comments

Equals Product_{n>=1} (1 - 1/A000032(2^n)).
Essentially the same as A019863 and A019827. - R. J. Mathar, Jan 16 2012
The value is the distance of the W point of the Wigner-Seitz cell of the body-centered cubic lattice (that is the Brioullin zone of the face-centered cubic lattice) to its four nearest neighbors. Let the points of the simple cubic lattice be at (1,0,0), (0,1,0), (1,0,0) etc and the point in the cube center at (1/2, 1/2, 1/2). Then W is at (0, 1/4, 1/2) [or any of the 24 symmetry related positions like (0, 3/4, 1/2), (0, 1/2, 1/4) etc.], and the four lattice points closest to W are at (-1/2, 1/2, 1/2), (0,0,0), (1/2, 1/2, 1/2) and (0,0,1). - R. J. Mathar, Aug 19 2013

Examples

			0.5590169943749474241022934171828190588601545899028814310677243113526302...
		

Crossrefs

Programs

Formula

Equals sqrt(5)/4 = (-1 + 2*phi)/4, with the golden section phi from A001622.
Equals 5*A020837.
Previous Showing 51-60 of 165 results. Next