cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 72 results. Next

A263267 Breadth-first traversal of the tree defined by the edge-relation A049820(child) = parent.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 8, 9, 10, 12, 7, 11, 14, 18, 13, 15, 16, 20, 22, 17, 24, 25, 26, 28, 30, 19, 21, 32, 34, 23, 40, 38, 42, 27, 44, 48, 46, 29, 36, 50, 56, 60, 49, 52, 54, 31, 33, 72, 58, 35, 84, 62, 66, 37, 39, 96, 68, 70, 41, 45, 104, 108, 74, 76, 78, 80, 43, 47, 120, 81, 82, 90, 88, 51, 128, 132, 83, 85, 86, 94, 53, 55, 136, 140, 87, 92, 102
Offset: 0

Views

Author

Antti Karttunen, Nov 27 2015

Keywords

Comments

It is conjectured that the terms of A259934 trace the only infinite path in this tree.
After the root (0), the tree narrows next time to the width of just one node at level A262508(1) = 9236, with vertex 119143.

Examples

			Rows 0 - 21 of the table. The lines show the nodes of the tree connected by the edge-relation A049820(child) = parent:
0;
| \
1, 2;
| \  \
3, 4, 6;____
|  |  | \   \
5, 8, 9, 10, 12;
|     |   |   |
7, _ 11, 14, 18;
  /  | \   \   \
13, 15, 16, 20, 22;____
     |  |      / | \   \
    17, 24, 25, 26, 28, 30;
     | \         |      |
    19, 21,     32,     34;
         |       |      | \
        23,     40,    38, 42;____
         |              | \       \
        27,            44, 48,     46;____
         | \            |   | \    |  \   \
        29, 36,        50, 56, 60, 49, 52, 54;
         | \                   |           |
        31, 33,                72,         58;
         |                     |           |  \
        35,                    84,         62, 66;
         | \                   |           |  \
        37, 39,                96,         68, 70;_______
            |  \               |  \           / |  \     \
            41, 45,           104, 108,     74, 76, 78,   80;
            |   |              |                |   |  \    \
            43, 47,           120,             _81, 82, 90, 88;
                |              |  \           / |   |   |
                51,           128, 132,     83, 85, 86, 94;
                 | \            | \          |       |   |
                53, 55        136, 140      87,     92, 102;______
                 |                           | \     |    |  \    \
                57,_                        89, 91, 98, 106,  110, 112;
               / |  \                       /   / \       |     |
             59, 63, 64,                  93, 95, 100,   114,   116;
              |                            |   |          |  \
             61,                          99, 97,       _118, 126;
              |                            |   |       /  |  \
             65,                         101, 105,  121, 122, 124;
(See also _Michael De Vlieger_'s poster in the Links section.)
		

Crossrefs

Inverse permutation: A263268.
Cf. A262507 (number of terms on row/level n), A263260 (total number of terms in levels 0 .. n).
Cf. A264988 (the left edge), this differs from A261089 (the least term on each level) for the first time at level 69.
Cf. A263269 (the right edge).
Cf. A262686 (maximum term on the level n).
Cf. A045765 (the leaves of the tree).
Cf. also permutations A263265 (obtained from this table by sorting each row into ascending order), A263266.
Cf. also arrays A265751 and A263271.
Differs from A263265 for the first time at n=31, where a(31) = 40, while A263265(31) = 38.
Cf. also A088975.

Programs

  • PARI
    uplim = 125753; \\ = A263260(10001).
    checklimit = 1440; \\ Hard limit 1440 good for at least up to A002182(67) = 1102701600 as A002183(67) = 1440.
    v263267 = vector(uplim);
    A263267 = n -> if(!n,n,v263267[n]);
    z = 0; for(n=0, uplim, t = A263267(n); write("b263267.txt", n, " ", t); for(k=t+1, t+checklimit, if((k-numdiv(k)) == t, z++; if(z <= uplim, v263267[z] = k))));
    
  • Sage
    # After David Eppstein's Python-code for A088975.
    def A263267():
      '''Breadth-first reading of irregular tree defined by the edge-relation A049820(child) = parent'''
      yield 0
      for x in A263267():
        for k in [x+1 .. 2*(x+1)]:
          if ((k - sloane.A000005(k)) == x): yield k
    def take(n,g):
      '''Returns a list composed of the next n elements returned by generator g.'''
      return [next(g) for _ in range(n)]
    take(120, A263267())
    
  • Scheme
    ;; This version creates the list of terms incrementally, using append! function that physically modifies the list at the same time as it is traversed. Otherwise the idea is essentially the same as with Python/Sage-program above:
    (define (A263267list_up_to_n_terms_at_least n) (let ((terms-produced (list 0))) (let loop ((startp terms-produced) (endp terms-produced) (k (- n 1))) (cond ((<= k 0) terms-produced) (else (let ((children (children-of-n-in-A049820-tree (car startp)))) (cond ((null? children) (loop (cdr startp) endp k)) (else (begin (append! endp children) (loop (cdr startp) children (- k (length children))))))))))))
    (define (children-of-n-in-A049820-tree n) (let loop ((k (A262686 n)) (children (list))) (cond ((<= k n) children) ((= (A049820 k) n) (loop (- k 1) (cons k children))) (else (loop (- k 1) children)))))

A262686 a(n) = largest number k such that k - d(k) = n, or 0 if no such number exists, where d(n) = the number of divisors of n (A000005).

Original entry on oeis.org

2, 4, 6, 5, 8, 7, 12, 0, 0, 11, 14, 16, 18, 0, 20, 17, 24, 21, 22, 0, 0, 23, 30, 27, 0, 0, 32, 36, 0, 33, 34, 35, 40, 0, 42, 39, 0, 0, 48, 45, 0, 43, 46, 0, 50, 47, 54, 51, 60, 0, 0, 55, 0, 57, 58, 0, 0, 64, 66, 61, 72, 65, 70, 0, 0, 69, 0, 0, 0, 75, 80, 73, 84, 77, 0, 0, 81, 79, 90, 0, 88, 85, 86, 87, 96, 0, 92, 91, 0, 93, 94, 100, 98, 99, 102, 97, 108, 105, 0, 101
Offset: 0

Views

Author

Antti Karttunen, Sep 28 2015

Keywords

Crossrefs

Cf. also A082284 (the smallest such number), A262511 (positions where these are equal and nonzero).

Programs

  • Mathematica
    Table[k = 2 n + 3; While[Nor[k - DivisorSigma[0, k] == n, k == 0], k--]; k, {n, 0, 99}] (* Michael De Vlieger, Sep 29 2015 *)
  • Scheme
    (definec (A262686 n) (if (zero? n) 2 (let ((u (+ n (A002183 (+ 2 (A261100 n)))))) (let loop ((k u)) (cond ((= (A049820 k) n) k) ((< k n) 0) (else (loop (- k 1))))))))

A178858 Divisors of 5040.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520, 5040
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

5040 is a highly composite number: A002182(19)=5040;
the sequence is finite with A002183(19)=60 terms: a(60)=5040.

Crossrefs

Programs

A178859 Divisors of 7560.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 27, 28, 30, 35, 36, 40, 42, 45, 54, 56, 60, 63, 70, 72, 84, 90, 105, 108, 120, 126, 135, 140, 168, 180, 189, 210, 216, 252, 270, 280, 315, 360, 378, 420, 504, 540, 630, 756, 840, 945, 1080, 1260, 1512, 1890
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

7560 is a highly composite number: A002182(20)=7560.
The sequence is finite with A002183(20)=64 terms: a(64)=7560.
Its primorial factorization is 6^2 * 210 and its representing polynomial p(x) of degree 6 with x=2 is x^6 + 18x^5 + 118x^4 + 348x^3 + 457x^2 + 210x. - Carlos Eduardo Olivieri, May 02 2015

Crossrefs

Programs

A178860 Divisors of 10080.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 96, 105, 112, 120, 126, 140, 144, 160, 168, 180, 210, 224, 240, 252, 280, 288, 315, 336, 360, 420, 480, 504, 560, 630, 672, 720, 840, 1008
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

10080 is a highly composite number: A002182(21)=10080.
The sequence is finite with A002183(21)=72 terms: a(72)=10080.

Crossrefs

Programs

A178861 Divisors of 15120.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 27, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 60, 63, 70, 72, 80, 84, 90, 105, 108, 112, 120, 126, 135, 140, 144, 168, 180, 189, 210, 216, 240, 252, 270, 280, 315, 336, 360, 378, 420, 432, 504, 540, 560, 630
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

15120 is a highly composite number: A002182(22)=15120;
the sequence is finite with A002183(22)=80 terms: a(80)=15120.
15120 is the smallest number with 80 divisors; 18480 is the next smallest; there are 84 such numbers less than 100,000. - Harvey P. Dale, Dec 17 2013

Crossrefs

Programs

A178862 Divisors of 20160.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 35, 36, 40, 42, 45, 48, 56, 60, 63, 64, 70, 72, 80, 84, 90, 96, 105, 112, 120, 126, 140, 144, 160, 168, 180, 192, 210, 224, 240, 252, 280, 288, 315, 320, 336, 360, 420, 448, 480, 504, 560, 576
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

20160 is a highly composite number: A002182(23)=20160.
The sequence is finite with A002183(23)=84 terms: a(84)=20160.

Crossrefs

Programs

A178863 Divisors of 25200.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 28, 30, 35, 36, 40, 42, 45, 48, 50, 56, 60, 63, 70, 72, 75, 80, 84, 90, 100, 105, 112, 120, 126, 140, 144, 150, 168, 175, 180, 200, 210, 225, 240, 252, 280, 300, 315, 336, 350, 360, 400, 420, 450, 504
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

25200 is a highly composite number: A002182(24)=25200;
the sequence is finite with A002183(24)=90 terms: a(90)=25200.

Crossrefs

Programs

A178877 Divisors of 1260.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 21, 28, 30, 35, 36, 42, 45, 60, 63, 70, 84, 90, 105, 126, 140, 180, 210, 252, 315, 420, 630, 1260
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

1260 is a highly composite number: A002182(16)=1260;
the sequence is finite with A002183(16)=36 terms: a(36)=1260.

Crossrefs

Programs

A178878 Divisors of 1680.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 35, 40, 42, 48, 56, 60, 70, 80, 84, 105, 112, 120, 140, 168, 210, 240, 280, 336, 420, 560, 840, 1680
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 21 2010

Keywords

Comments

1680 is a highly composite number: A002182(17)=1680;
the sequence is finite with A002183(17)=40 terms: a(40)=1680.

Crossrefs

Programs

Previous Showing 11-20 of 72 results. Next