cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 218 results. Next

A165953 Decimal expansion of (5*sqrt(3) + sqrt(15))/(6*Pi).

Original entry on oeis.org

6, 6, 4, 9, 0, 8, 8, 9, 4, 2, 0, 5, 3, 2, 6, 6, 4, 3, 1, 1, 4, 4, 2, 8, 4, 4, 6, 7, 0, 8, 6, 3, 3, 7, 1, 6, 1, 6, 4, 8, 7, 6, 5, 8, 0, 5, 5, 5, 6, 9, 1, 9, 3, 8, 1, 0, 5, 7, 5, 9, 2, 6, 0, 5, 7, 2, 2, 9, 6, 4, 7, 1, 8, 1, 8, 7, 7, 3, 2, 5, 9, 7, 4, 9, 7, 0, 8, 9, 0, 0, 2, 6, 9, 2, 0, 9, 2, 5, 9, 8, 9, 8, 2, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a regular dodecahedron to the volume of the circumscribed sphere (which has circumradius a*(sqrt(3) + sqrt(15))/4 = a*(A002194 + A010472)/4, where a is the dodecahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165954. A063723 shows the order of these by size.

Examples

			0.6649088942053266431144284467086337161648765805556919381057592605722964718...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(5*Sqrt[3]+Sqrt[15])/(6*Pi),10,120][[1]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    (5*sqrt(3)+sqrt(15))/(6*Pi)

Formula

Equals (5*A002194 + A010472)/(6*A000796).
Equals (5*A002194 + A010472)*A049541/6.
Equals (10*A010527 + A010472)*A049541/6.
Equals (5 + sqrt(5))/(2*Pi*sqrt(3)).
Equals (5 + A002163)*A049541*A020760/2.

A171537 Decimal expansion of sqrt(3/7).

Original entry on oeis.org

6, 5, 4, 6, 5, 3, 6, 7, 0, 7, 0, 7, 9, 7, 7, 1, 4, 3, 7, 9, 8, 2, 9, 2, 4, 5, 6, 2, 4, 6, 8, 5, 8, 3, 5, 5, 5, 6, 9, 2, 0, 8, 0, 8, 2, 3, 9, 5, 4, 2, 4, 5, 5, 7, 5, 1, 5, 3, 2, 0, 3, 0, 3, 4, 1, 5, 2, 6, 6, 9, 1, 7, 9, 3, 5, 3, 9, 5, 8, 4, 0, 9, 4, 3, 4, 8, 0, 2, 2, 2, 7, 8, 4, 7, 7, 7, 8, 6, 1, 8, 1, 1, 0, 8, 5
Offset: 0

Views

Author

R. J. Mathar, Dec 11 2009

Keywords

Comments

The absolute value of the Clebsch-Gordan coupling coefficient = <2 3/2 ; -2 -1/2 | 7/2 -5/2>.

Examples

			sqrt(3/7) = 0.6546536707079771437982924562...
		

Programs

Formula

equals A002194/A010465 = 3/A010477.

A176053 Decimal expansion of (3+2*sqrt(3))/3.

Original entry on oeis.org

2, 1, 5, 4, 7, 0, 0, 5, 3, 8, 3, 7, 9, 2, 5, 1, 5, 2, 9, 0, 1, 8, 2, 9, 7, 5, 6, 1, 0, 0, 3, 9, 1, 4, 9, 1, 1, 2, 9, 5, 2, 0, 3, 5, 0, 2, 5, 4, 0, 2, 5, 3, 7, 5, 2, 0, 3, 7, 2, 0, 4, 6, 5, 2, 9, 6, 7, 9, 5, 5, 3, 4, 4, 6, 0, 5, 8, 6, 6, 6, 9, 1, 3, 8, 7, 4, 3, 0, 7, 9, 1, 1, 7, 1, 4, 9, 9, 0, 5, 0, 4, 5, 0, 4, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (3+2*sqrt(3))/3 is A010696.
a(n) = A020832(n-1) for n > 1; a(1) = 2.
This equals the ratio of the radius of the outer Soddy circle and the common radius of the three kissing circles. See A343235, also for links. - Wolfdieter Lang, Apr 19 2021
Previous comment is, together with A246724, the answer to the 1st problem proposed during the 4th Canadian Mathematical Olympiad in 1972. - Bernard Schott, Mar 20 2022

Examples

			2.15470053837925152901...
		

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993 - Canadian Mathematical Society & Société Mathématique du Canada, Problem 1, 1972, page 37, 1993.

Crossrefs

Cf. A002194 (sqrt(3)), A020832 (1/sqrt(75)), A010696 (repeat 2, 6).

Programs

  • Mathematica
    RealDigits[1+2/3Sqrt[3],10,100][[1]] (* Paolo Xausa, Aug 10 2023 *)

Formula

Equals 2 + A246724.

A176322 Decimal expansion of sqrt(1365).

Original entry on oeis.org

3, 6, 9, 4, 5, 9, 0, 6, 4, 0, 3, 8, 2, 2, 3, 3, 1, 9, 9, 1, 6, 3, 5, 6, 1, 1, 5, 9, 9, 7, 9, 7, 1, 4, 2, 0, 5, 6, 5, 1, 5, 9, 7, 4, 2, 2, 3, 1, 7, 1, 5, 5, 8, 7, 4, 6, 3, 9, 0, 6, 4, 1, 8, 8, 8, 4, 9, 2, 6, 6, 0, 6, 6, 7, 2, 5, 1, 5, 9, 4, 7, 0, 2, 0, 9, 0, 3, 0, 4, 0, 6, 0, 5, 4, 4, 6, 5, 2, 9, 0, 3, 8, 1, 2, 5
Offset: 2

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Continued fraction expansion of sqrt(1365) is (repeat 1, 17, 2, 17, 1, 72) preceded by 36.

Examples

			36.94590640382233199163...
		

Crossrefs

Cf. A002194 (sqrt(3)), A002163 (sqrt(5)), A010465 (sqrt(7)), A010470 (sqrt(13)).
Cf. A176321 ((35+sqrt(1365))/14).

Programs

  • Magma
    SetDefaultRealField(RealField(120)); Sqrt(1365); // G. C. Greubel, Nov 26 2019
    
  • Maple
    evalf( sqrt(1365), 120); # G. C. Greubel, Nov 26 2019
  • Mathematica
    RealDigits[Sqrt[1365],10,120][[1]] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    default(realprecision, 120); sqrt(1365) \\ G. C. Greubel, Nov 26 2019
    
  • Sage
    numerical_approx(sqrt(1365), digits=120) # G. C. Greubel, Nov 26 2019

Formula

Equals sqrt(3)*sqrt(5)*sqrt(7)*sqrt(13).

A184797 Numbers k such that floor(k*sqrt(3)) is prime.

Original entry on oeis.org

2, 3, 8, 10, 11, 17, 18, 24, 25, 31, 39, 41, 46, 48, 60, 62, 63, 76, 91, 100, 105, 112, 114, 115, 122, 129, 135, 138, 145, 152, 157, 160, 180, 181, 195, 202, 204, 212, 219, 225, 232, 242, 249, 250, 254, 256, 264, 270, 277, 284, 294, 301, 302, 316, 322, 329, 330, 339, 346, 347, 351, 354, 374, 381, 382, 389, 391, 399, 405, 420, 427, 429, 434, 444, 478, 479, 493, 495, 496, 509, 510, 524, 526, 531, 541, 547, 561, 568, 576, 583, 585, 590, 600
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			See A184796.
		

Crossrefs

Programs

A241149 Decimal expansion of sqrt(2) + sqrt(3) + sqrt(5).

Original entry on oeis.org

5, 3, 8, 2, 3, 3, 2, 3, 4, 7, 4, 4, 1, 7, 6, 2, 0, 3, 8, 7, 3, 8, 3, 0, 8, 7, 3, 4, 4, 4, 6, 8, 4, 6, 6, 8, 0, 9, 5, 3, 0, 9, 5, 4, 8, 8, 7, 9, 8, 8, 5, 4, 4, 2, 5, 5, 0, 3, 3, 8, 3, 9, 6, 2, 8, 5, 3, 1, 8, 6, 4, 2, 1, 0, 0, 8, 7, 1, 1, 9, 7, 5, 3, 4, 5, 9, 4, 8, 1, 2, 9, 4, 6, 3, 6, 7, 2, 4, 2, 3, 3, 8, 0, 1, 4, 8, 1, 6, 3, 7, 9, 7, 0, 9, 2, 7, 8, 3, 5, 5, 9, 1, 4, 8, 0, 4, 8, 8, 7, 5, 2, 9, 6, 7, 6, 3
Offset: 1

Views

Author

K. D. Bajpai, Apr 16 2014

Keywords

Comments

This is an algebraic integer, with its minimal polynomial being x^8 - 40x^6 + 352x^4 - 960x^2 + 576. - Alonso del Arte, Apr 17 2014

Examples

			5.382332347441762038738308734446846680953095488798854425503383962...
		

Crossrefs

Cf. A002163 (decimal expansion: sqrt(5)).
Cf. A002193 (decimal expansion: sqrt(2)).
Cf. A002194 (decimal expansion: sqrt(3)).

Programs

  • Magma
    Sqrt(2) + Sqrt(3) + Sqrt(5); // G. C. Greubel, Jul 27 2018
  • Maple
    evalf(add(sqrt(ithprime(i)), i=1..3), 121);  # Alois P. Heinz, Jun 13 2022
  • Mathematica
    RealDigits[Sqrt[2] + Sqrt[3] + Sqrt[5], 10, 200]
  • PARI
    sqrt(2) + sqrt(3) + sqrt(5) \\ G. C. Greubel, Jul 27 2018
    

A265294 Decimal expansion of Sum_{n>=1} (x - c(2n-1)), where c = convergents to (x = sqrt(3)).

Original entry on oeis.org

8, 0, 2, 5, 8, 3, 0, 9, 0, 8, 0, 3, 5, 1, 4, 8, 3, 4, 3, 7, 7, 8, 7, 4, 1, 8, 1, 2, 6, 3, 0, 4, 2, 4, 9, 6, 0, 5, 8, 6, 0, 4, 7, 7, 6, 8, 9, 5, 1, 3, 2, 7, 7, 7, 0, 1, 7, 7, 4, 1, 8, 5, 1, 4, 8, 4, 1, 4, 0, 6, 0, 8, 4, 4, 8, 7, 0, 0, 3, 0, 2, 2, 1, 7, 9, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 0.8025830908035148343778741812630...
		

Crossrefs

Programs

  • Maple
    x := sqrt(3) - 2:
    evalf(2*sqrt(3)*add( x^(n*(n+1)/2)/(x^n - 1), n = 1..18), 100); # Peter Bala, Aug 24 2022
  • Mathematica
    x = Sqrt[3]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265294 *)
    RealDigits[s2, 10, 120][[1]]  (* A265295 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265296 *)

Formula

From Peter Bala, Aug 24 2022: (Start)
Equals 2*sqrt(3)*Sum_{n >= 1} 1/( 1 + (2+sqrt(3))^(2*n-1) ).
A more rapidly converging series for the constant is 2*sqrt(3)*Sum_{n >= 1} x^(n*(n+1)/2)/(x^n - 1), where x = sqrt(3) - 2. See A001227. (End)

A265295 Decimal expansion of Sum_{n >= 1} (c(2*n) - x), where c(n) = the n-th convergent to x = sqrt(3).

Original entry on oeis.org

2, 8, 7, 2, 8, 0, 0, 8, 0, 0, 8, 3, 4, 8, 8, 3, 9, 3, 5, 1, 1, 4, 5, 1, 5, 3, 9, 8, 7, 6, 6, 8, 3, 3, 1, 6, 8, 2, 3, 9, 0, 9, 4, 2, 0, 8, 6, 4, 5, 6, 7, 1, 8, 7, 9, 3, 8, 7, 1, 6, 8, 2, 6, 8, 1, 3, 8, 8, 3, 8, 6, 4, 1, 0, 7, 1, 6, 8, 0, 0, 6, 4, 0, 8, 2, 6
Offset: 0

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 0.28728008008348839351145153987668331682390...
		

Crossrefs

Programs

  • Maple
    x := 7 - 4*sqrt(3):
    evalf(2*sqrt(3)*add( x^(n^2)*(1 + x^n)/(1 - x^n), n = 1..10), 100); # Peter Bala, Aug 24 2022
  • Mathematica
    x = Sqrt[3]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265294 *)
    RealDigits[s2, 10, 120][[1]]  (* A265295 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265296 *)

Formula

Equals 2*sqrt(3)*Sum_{n >= 1} x^(n^2)*(1 + x^n)/(1 - x^n), where x = 7 - 4*sqrt(3). - Peter Bala, Aug 24 2022

A265296 Decimal expansion of Sum_{n >= 1} (c(2*n) - c(2*n-1)), where c(n) = the n-th convergent to x = sqrt(3).

Original entry on oeis.org

1, 0, 8, 9, 8, 6, 3, 1, 7, 0, 8, 8, 7, 0, 0, 3, 2, 2, 7, 8, 8, 9, 3, 2, 5, 7, 2, 1, 1, 3, 9, 7, 2, 5, 8, 1, 2, 8, 8, 2, 5, 1, 4, 1, 9, 7, 7, 5, 9, 6, 9, 9, 9, 6, 4, 9, 5, 6, 4, 5, 8, 6, 7, 8, 2, 9, 8, 0, 2, 4, 4, 7, 2, 5, 5, 5, 8, 6, 8, 3, 0, 8, 6, 2, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2015

Keywords

Examples

			sum = 1.0898631708870032278893257211397258128825141977596999...
		

Crossrefs

Programs

  • Maple
    x := 2 - sqrt(3):
    evalf(2*sqrt(3)*add(x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), n = 1..13), 100); # Peter Bala, Aug 24 2022
  • Mathematica
    x = Sqrt[3]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265294 *)
    RealDigits[s2, 10, 120][[1]]  (* A265295 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265296 *)

Formula

Equals 2*sqrt(3)*Sum_{n >= 1} x^(n^2)*(1 + x^(2*n))/(1 - x^(2*n)), where x = 2 - sqrt(3). - Peter Bala, Aug 24 2022

A272535 Decimal expansion of the edge length of a regular 16-gon with unit circumradius.

Original entry on oeis.org

3, 9, 0, 1, 8, 0, 6, 4, 4, 0, 3, 2, 2, 5, 6, 5, 3, 5, 6, 9, 6, 5, 6, 9, 7, 3, 6, 9, 5, 4, 0, 4, 4, 4, 8, 1, 8, 5, 5, 3, 8, 3, 2, 3, 5, 5, 0, 3, 9, 0, 9, 6, 1, 5, 5, 0, 9, 0, 0, 4, 1, 7, 8, 9, 8, 9, 5, 2, 6, 6, 3, 7, 5, 7, 1, 8, 4, 9, 1, 6, 0, 4, 5, 0, 6, 5, 0, 6, 1, 8, 4, 6, 8, 1, 8, 0, 7, 6, 3, 4, 6, 1, 9, 8, 4
Offset: 0

Views

Author

Stanislav Sykora, May 02 2016

Keywords

Comments

Like all m-gons with m equal to a power of 2 (see A003401 and A000079), this is a constructible number.

Examples

			0.390180644032256535696569736954044481855383235503909615509004...
		

Crossrefs

Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A228787 (17), A272536 (20).

Programs

  • Mathematica
    RealDigits[N[2Sin[Pi/16], 100]][[1]] (* Robert Price, May 02 2016*)
  • PARI
    2*sin(Pi/16)

Formula

Equals 2*sin(Pi/m) for m=16, 2*A232738. Equals also sqrt(2-sqrt(2+sqrt(2))).
Previous Showing 71-80 of 218 results. Next