cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A352155 Numbers m such that the smallest digit in the decimal expansion of 1/m is 1, ignoring leading and trailing 0's.

Original entry on oeis.org

1, 6, 7, 8, 9, 10, 14, 24, 26, 28, 32, 35, 54, 55, 56, 60, 64, 65, 66, 70, 72, 74, 75, 80, 82, 88, 90, 100, 104, 112, 128, 140, 175, 176, 224, 240, 260, 280, 320, 350, 432, 448, 468, 504, 512, 528, 540, 548, 550, 560, 572, 576, 584, 592, 600, 616, 625, 640, 650, 660
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples).
Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart from 1 (A003592) would be terms.
If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive terms.
{8, 88, 888, ...} = A002282 \ {0} is a subsequence.

Examples

			m = 14 is a term since 1/14 = 0.0714285714285714285... and the smallest term after the leading 0 is 1.
m = 240 is a term since 1/240 = 0.00416666666... and the smallest term after the leading 0's is 1.
m = 888 is a term since 1/888 = 0.001126126126... and the smallest term after the leading 0's is 1.
		

Crossrefs

Similar with smallest digit k: A352154 (k=0), this sequence (k=1), A352156 (k=2), A352157 (k=3), A352158 (k=4), A352159 (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9).

Programs

  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 1 &]
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A352155_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            m2, m5 = multiplicity(2,n), multiplicity(5,n)
            k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1
            c = k//n
            s = str(m*k//n-c*m).zfill(t)
            if s == '0' and min(str(c)) == '1':
                yield n
            elif '0' not in s and min(str(c).lstrip('0')+s) == '1':
                    yield n
    A352155_list = list(islice(A352155_gen(),20)) # Chai Wah Wu, Mar 28 2022

Formula

A352153(a(n)) = 1.

A180160 (sum of digits) mod (number of digits) of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2010

Keywords

Comments

a(n) = A007953(n) mod A055642(n);
a(A061383(n)) = 0; a(A180157(n)) > 0;
a(repdigits)=0: a(A010785(n))=0: a(A002275(n))=0: a(A002276(n))=0: a(A002277(n))=0: a(A002278(n))=0: a(4(n))=0: a(A002279(n))=0: a(A002280(n))=0: a(A002281(n))=0: a(A002282(n))=0: a(A002283(n))=0;
A123522 gives smallest m such that a(m) = n.

Crossrefs

Programs

  • Mathematica
    A180160[n_] := If[n == 0, 0, Mod[Total[#], Length[#]] & [IntegerDigits[n]]];
    Array[A180160, 100, 0] (* Paolo Xausa, Jun 30 2024 *)
    Join[{0},Table[Mod[Total[IntegerDigits[n]],IntegerLength[n]],{n,110}]] (* Harvey P. Dale, Jul 30 2025 *)

A250256 Least positive integer whose decimal digits divide the plane into n regions (A249572 variant).

Original entry on oeis.org

1, 6, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
Offset: 1

Views

Author

Rick L. Shepherd, Nov 15 2014

Keywords

Comments

Equivalently, with offset 0, least positive integer with n holes in its decimal digits. Leading zeros are not permitted. Variation of A249572 with the numeral "4" considered open at the top, as it is often handwritten. See also the comments in A249572.
For n > 2, a(n) + a(n+1) divides the plane into 2 regions. For n > 1, a(2n) - a(2n-1) divides the plane into n+1 regions. For n >= 1, a(2n+1) - a(2n) divides the plane into n regions. - Ivan N. Ianakiev, Feb 23 2015

Examples

			The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller positive integer does this, so a(4) = 68.
		

Crossrefs

Programs

  • Magma
    I:=[1,6,8,68]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
  • Mathematica
    Join[{1, 6, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)

Formula

a(n) = 10*a(n-2) + 8 for n >= 4.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: x*(10*x^3 - 8*x^2 + 5*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
E.g.f.: (9 + 45*x - 40*cosh(x) + 31*cosh(sqrt(10)*x) - 40*sinh(x) + 4*sqrt(10)*sinh(sqrt(10)*x))/45. - Stefano Spezia, Aug 11 2025

A098406 a(n) = (10^n + 17)/9.

Original entry on oeis.org

2, 3, 13, 113, 1113, 11113, 111113, 1111113, 11111113, 111111113, 1111111113, 11111111113, 111111111113, 1111111111113, 11111111111113, 111111111111113, 1111111111111113, 11111111111111113, 111111111111111113, 1111111111111111113, 11111111111111111113, 111111111111111111113
Offset: 0

Views

Author

Klaus Brockhaus, Sep 07 2004

Keywords

Comments

A097683 gives numbers k such that a(k) is prime.

Examples

			a(5) = (100000 + 17)/9 = 11113.
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Table[PadLeft[{3},n,1],{n,20}] (* Harvey P. Dale, Jun 18 2011 *)
  • PARI
    for(n=1,18,print1(((10^n)+17)/9,","))

Formula

a(1) = 3; a(n) = a(n-1) + 10^(n-1).
a(1) = 3; a(n) = 10*a(n-1) - 17.
a(n) = A047855(n)+1 = A002275(n)+2.
G.f.: (2-19*x)/((10*x-1)*(x-1)). - R. J. Mathar, Jan 27 2017
From Elmo R. Oliveira, Aug 23 2024: (Start)
E.g.f.: exp(x)*(exp(9*x) + 17)/9.
a(n) = A062397(n) - A002282(n).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. (End)

Extensions

a(0) from Ivan Panchenko, Nov 02 2013

A294327 a(n) = ((9*n + 8)*10^n - 8)/9.

Original entry on oeis.org

0, 18, 288, 3888, 48888, 588888, 6888888, 78888888, 888888888, 9888888888, 108888888888, 1188888888888, 12888888888888, 138888888888888, 1488888888888888, 15888888888888888, 168888888888888888, 1788888888888888888, 18888888888888888888, 198888888888888888888
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2017

Keywords

Crossrefs

Programs

  • PARI
    concat(0, Vec(18*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2) + O(x^30))) \\ Colin Barker, Oct 28 2017

Formula

From Colin Barker, Oct 28 2017: (Start)
G.f.: 18*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)

A332181 a(n) = 8*(10^(2n+1)-1)/9 - 7*10^n.

Original entry on oeis.org

1, 818, 88188, 8881888, 888818888, 88888188888, 8888881888888, 888888818888888, 88888888188888888, 8888888881888888888, 888888888818888888888, 88888888888188888888888, 8888888888881888888888888, 888888888888818888888888888, 88888888888888188888888888888, 8888888888888881888888888888888
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. (A077776-1)/2 = A183184: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332180 .. A332189 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332181 := n -> 8*(10^(2*n+1)-1)/9-7*10^n;
  • Mathematica
    Array[8 (10^(2 # + 1)-1)/9 - 7*10^# &, 15, 0]
  • PARI
    apply( {A332181(n)=10^(n*2+1)\9*8-7*10^n}, [0..15])
    
  • Python
    def A332181(n): return 10**(n*2+1)//9*8-7*10**n

Formula

a(n) = 8*A138148(n) + 10^n = A002282(2n+1) - 7*10^n.
G.f.: (1 + 707*x - 1500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332187 a(n) = 8*(10^(2n+1)-1)/9 - 10^n.

Original entry on oeis.org

7, 878, 88788, 8887888, 888878888, 88888788888, 8888887888888, 888888878888888, 88888888788888888, 8888888887888888888, 888888888878888888888, 88888888888788888888888, 8888888888887888888888888, 888888888888878888888888888, 88888888888888788888888888888, 8888888888888887888888888888888
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. (A077776-1)/2 = A183190: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002282 (8*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332117 .. A332197 (variants with different "wing" digit 1, ..., 9).
Cf. A332180 .. A332189 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332187 := n -> 8*(10^(2*n+1)-1)/9-10^n;
  • Mathematica
    Array[8 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{7,878,88788},20] (* Harvey P. Dale, Jul 21 2024 *)
  • PARI
    apply( {A332187(n)=10^(n*2+1)\9*8-10^n}, [0..15])
    
  • Python
    def A332187(n): return 10**(n*2+1)//9*8-10**n

Formula

a(n) = 8*A138148(n) + 7*10^n = A002282(2n+1) - 10^n.
G.f.: (7 + 101*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A134778 Last digit of n alphabetically.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 1, 1, 6, 7, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 2, 3, 3, 3, 3, 3, 3, 3, 0, 1, 2, 3, 4, 4, 6, 7, 4, 9, 0, 1, 2, 3, 4, 5, 6, 7, 5, 9, 0, 6, 2, 3, 6, 6, 6, 6, 6, 6, 0, 7, 2, 3, 7, 7, 6, 7, 7, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 9, 9, 6, 7, 9, 9, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Rick L. Shepherd, Nov 11 2007

Keywords

Comments

Digits are decimal with names in English (see A000052). A134778(n)=A134777(n) iff n is a repdigit (n=A010785(m)), in which case a(n)=A010888(m), the repeated digit. a(n)=0 iff n is a member of A011540. a(n)=8 iff n is a member of A002282-{0}.

Examples

			a(104) = 0 because the digits of 104 are 1 (one), 0 (zero) and 4 (four) and "zero" occurs after both "four" and "one" alphabetically.
		

Crossrefs

Programs

  • Python
    def alpha(n): return [8, 5, 4, 9, 1, 7, 6, 3, 2, 0].index(n)
    def a(n): return sorted(map(int, str(n)), key=alpha)[-1]
    print([a(n) for n in range(105)]) # Michael S. Branicky, Dec 12 2023

A250257 Least nonnegative integer whose decimal digits divide the plane into n regions.

Original entry on oeis.org

1, 0, 8, 48, 88, 488, 888, 4888, 8888, 48888, 88888, 488888, 888888, 4888888, 8888888, 48888888, 88888888, 488888888, 888888888, 4888888888, 8888888888, 48888888888, 88888888888, 488888888888, 888888888888, 4888888888888, 8888888888888, 48888888888888
Offset: 1

Views

Author

Rick L. Shepherd, Nov 15 2014

Keywords

Comments

Equivalently, with offset 0, least nonnegative integer with n holes in its decimal digits. Leading zeros are not permitted. Identical to A249572 except that a(2) = 0, not 4. See also the comments in A249572.

Examples

			The integer 48, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller nonnegative integer does this, so a(4) = 48.
		

Crossrefs

Programs

  • Magma
    I:=[1,0,8,48,88]; [n le 5 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
  • Mathematica
    Join[{1, 0, 8}, RecurrenceTable[{a[1]==48, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)

Formula

a(n) = 10*a(n-2) + 8 for n >= 5.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 5.
G.f.: x*(-40*x^4 + 50*x^3 - 2*x^2 - x + 1)/((x - 1)*(10*x^2 - 1)). (End)

A250258 Least nonnegative integer whose decimal digits divide the plane into n regions (A250257 variant).

Original entry on oeis.org

1, 0, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
Offset: 1

Views

Author

Rick L. Shepherd, Nov 15 2014

Keywords

Comments

Equivalently, with offset 0, least nonnegative integer with n holes in its decimal digits. Leading zeros are not permitted. Variation of A250257 with the numeral "4" considered open at the top, as it is often handwritten. See also the comments in A249572.

Examples

			The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller nonnegative integer does this, so a(4) = 68.
		

Crossrefs

Programs

  • Magma
    I:=[1,0,8,68,88]; [n le 5 select I[n] else 10*Self(n-2)+8: n in [1..40]]; // Vincenzo Librandi, Nov 16 2014
  • Mathematica
    Join[{1, 0, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)

Formula

a(n) = 10*a(n-2) + 8 for n >= 5.
a(n) = A250256(n), n<>2.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 5.
G.f.: x*(-60*x^4 + 70*x^3 - 2*x^2 - x + 1)/((x - 1)*(10*x^2 - 1)). (End)
Previous Showing 21-30 of 43 results. Next