A381915
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / B(x) ), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 3, 18, 145, 1378, 14515, 163700, 1936414, 23716654, 298216851, 3827542585, 49938733635, 660366743580, 8830549084588, 119205253249287, 1622258295003714, 22232669093660250, 306569446979862205, 4250285556933578693, 59210418891925845529, 828417259759216617257
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(3*n-k+1, n-k)/(n+4*k+1));
A381987
E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 2, 11, 160, 3941, 134486, 5851327, 309520436, 19283504585, 1382980764106, 112223497464371, 10165461405056552, 1016801830348902061, 111312715288354681310, 13237965546409421546471, 1699516550894276788156156, 234263144339070269872076177, 34507561203827621878485498386
Offset: 0
-
seq(simplify(hypergeom([-n, 1/2, 1/4, 3/4], [2/3, 4/3], -256/27)), n = 0..17); # Peter Bala, Mar 13 2025
-
Table[HypergeometricPFQ[{-n, 1/2, 1/4, 3/4}, {2/3, 4/3}, -256/27], {n, 0, 20}] (* Vaclav Kotesovec, Mar 14 2025 *)
-
a(n) = n!*sum(k=0, n, binomial(4*k+1, k)/((4*k+1)*(n-k)!));
A381989
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 2, 19, 514, 22621, 1369546, 105616639, 9901346554, 1093292035609, 138977379784882, 19990424969236171, 3209995501651871890, 569216406245186726965, 110476637766622355475898, 23294266811686640511534199, 5302371488162151660366545866, 1295920217231693678343467474353
Offset: 0
A382088
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 9, 178, 5549, 237456, 12945037, 858203872, 67035559257, 6029839290880, 613862192499281, 69777500840918784, 8760124051527691141, 1203852634738613966848, 179746834136205848167125, 28975042890917781500747776, 5015346425440407318539964593, 927775677566572703009955053568
Offset: 0
-
a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(3*n+k-1, k)/(n-k-1)!));
A153395
G.f.: A(x) = F(x*G(x)) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 3, 13, 69, 417, 2754, 19373, 142732, 1088875, 8533278, 68308641, 556242792, 4593529882, 38380159009, 323860968709, 2756019889146, 23625552635184, 203823793118268, 1768357487401595, 15418860927887232, 135042445950316514
Offset: 0
G.f.: A(x) = F(x*G(x)) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1050*x^5 +...
G(x)*A(x)^2 = 1 + 3*x + 13*x^2 + 69*x^3 + 417*x^4 + 2754*x^5 +...
-
nmax = 21;
G[_] = 0;
Do[G[x_] = 1 + x*G[x]^4 + O[x]^nmax, nmax];
F[x_] = Sum[CatalanNumber[n] x^n, {n, 0, nmax}];
A[x_] = F[x G[x]];
CoefficientList[A[x], x] (* Jean-François Alcover, Sep 09 2018 *)
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+k,n-k)*k/(4*(n-k)+k)))}
A153397
G.f.: A(x) = F(x*G(x)^4) = F(G(x)-1) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 6, 43, 334, 2717, 22776, 195000, 1695874, 14927990, 132673398, 1188412986, 10714602196, 97133633788, 884716464592, 8091061578807, 74259516900390, 683694381314696, 6312247839166260, 58424001667319720, 541971167468786770
Offset: 0
G.f.: A(x) = F(x*G(x)^4) = 1 + x + 6*x^2 + 43*x^3 + 334*x^4 +...
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 98*x^3 + 790*x^4 + 6618*x^5 +...
G(x)^4*A(x)^2 = 1 + 6*x + 43*x^2 + 334*x^3 + 2717*x^4 + 22776*x^5 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+4*k,n-k)*4*k/(4*(n-k)+4*k)))}
A153398
G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x*G(x)) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 5, 33, 245, 1941, 16023, 136075, 1179833, 10392981, 92701411, 835271032, 7589337123, 69444928453, 639280878401, 5915683250220, 54991636090761, 513257729193329, 4807619948647095, 45177320023095160, 425766248463523359
Offset: 0
G.f.: A(x) = F(x*G(x)^2) = 1 + x + 5*x^2 + 33*x^3 + 245*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 76*x^3 + 581*x^4 + 4702*x^5 +...
A(x)^3 = 1 + 3*x + 18*x^2 + 130*x^3 + 1023*x^4 + 8457*x^5 +...
G(x)^2*A(x)^3 = 1 + 5*x + 33*x^2 + 245*x^3 + 1941*x^4 + 16023*x^5 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(4*(n-k)+2*k,n-k)*2*k/(4*(n-k)+2*k)))}
A381908
Expansion of (1/x) * Series_Reversion( x / ((1+x) * B(x)) ), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 2, 9, 64, 556, 5351, 54818, 585941, 6459430, 72902748, 838174008, 9781930978, 115579403512, 1379879992445, 16620303073607, 201717610488447, 2464502123154530, 30286289207099652, 374115157763376043, 4642636869759251879, 57852132860181652189, 723592983110972398779
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(n+1, n-k)/(n+4*k+1));
A381909
Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * B(x)) ), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 3, 16, 121, 1117, 11569, 128648, 1500054, 18091859, 223794730, 2823369749, 36185653049, 469808971400, 6165903108879, 81667617713170, 1090234962290114, 14654059445570507, 198151602861222385, 2693625234657193038, 36789566028850640226, 504600217464088999466
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(2*n+2, n-k)/(n+4*k+1));
A381910
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * B(x)) ), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 4, 26, 222, 2243, 25243, 305217, 3878731, 51097713, 691596081, 9558970897, 134347855874, 1914131985782, 27582542400252, 401284140631911, 5886072268606617, 86951528919335670, 1292467847124221832, 19316795168721092789, 290107272994659617741, 4375905051887803660504
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(3*n+3, n-k)/(n+4*k+1));
Comments