cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 261 results. Next

A381915 Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / B(x) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 3, 18, 145, 1378, 14515, 163700, 1936414, 23716654, 298216851, 3827542585, 49938733635, 660366743580, 8830549084588, 119205253249287, 1622258295003714, 22232669093660250, 306569446979862205, 4250285556933578693, 59210418891925845529, 828417259759216617257
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(3*n-k+1, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^2.
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(3*n-k+1,n-k)/(n+4*k+1).

A381987 E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 11, 160, 3941, 134486, 5851327, 309520436, 19283504585, 1382980764106, 112223497464371, 10165461405056552, 1016801830348902061, 111312715288354681310, 13237965546409421546471, 1699516550894276788156156, 234263144339070269872076177, 34507561203827621878485498386
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Comments

For each positive integer k, the sequence obtained by reducing a(n) modulo k is a periodic sequence with period dividing k. For example, modulo 5 the sequence becomes [1, 2, 1, 0, 1, 1, 2, 1, 0, 1, ...] with period 5. In particular, a(5*n+3) == 0 (mod 5). Cf. A047974. - Peter Bala, Mar 13 2025

Crossrefs

Programs

  • Maple
    seq(simplify(hypergeom([-n, 1/2, 1/4, 3/4], [2/3, 4/3], -256/27)), n = 0..17); # Peter Bala, Mar 13 2025
  • Mathematica
    Table[HypergeometricPFQ[{-n, 1/2, 1/4, 3/4}, {2/3, 4/3}, -256/27], {n, 0, 20}] (* Vaclav Kotesovec, Mar 14 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, binomial(4*k+1, k)/((4*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} A002293(k)/(n-k)!.
From Peter Bala, Mar 13 2025: (Start)
a(n) = hypergeom([-n, 1/2, 1/4, 3/4], [2/3, 4/3], -256/27).
3*(3*n - 1)*(3*n + 1)*a(n) = n*(256*n^2 - 303*n + 95)*a(n-1) - 3*(n - 1)*(256*n^2 - 485*n + 245)*a(n-2) + 3*(256*n - 375)*(n - 1)*(n - 2)*a(n-3) - 256*(n - 1)*(n - 2)*(n - 3)*a(n-4) with a(0) = 1, a(1) = 2, a(2) = 11 and a(3) = 160. (End)
a(n) ~ 2^(8*n+1) * n^(n-1) / (3^(3*n + 3/2) * exp(n - 27/256)). - Vaclav Kotesovec, Mar 14 2025

A381989 E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 19, 514, 22621, 1369546, 105616639, 9901346554, 1093292035609, 138977379784882, 19990424969236171, 3209995501651871890, 569216406245186726965, 110476637766622355475898, 23294266811686640511534199, 5302371488162151660366545866, 1295920217231693678343467474353
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*k+1)^(n-k)*binomial(6*k+1, k)/((6*k+1)*(n-k)!));

Formula

Let F(x) be the e.g.f. of A382001. F(x) = B(x*A(x)^2) = exp( 1/4 * Sum_{k>=1} binomial(4*k,k) * (x*A(x)^2)^k/k ).
a(n) = n! * Sum_{k=0..n} (2*k+1)^(n-k) * A002295(k)/(n-k)!.

A382088 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 9, 178, 5549, 237456, 12945037, 858203872, 67035559257, 6029839290880, 613862192499281, 69777500840918784, 8760124051527691141, 1203852634738613966848, 179746834136205848167125, 28975042890917781500747776, 5015346425440407318539964593, 927775677566572703009955053568
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(3*n+k-1, k)/(n-k-1)!));

Formula

E.g.f. A(x) satisfies A(x) = exp(x*A(x) * B(x*A(x))^3).
a(n) = (n-1)! * Sum_{k=0..n-1} (n+1)^(n-k-1) * binomial(3*n+k-1,k)/(n-k-1)! for n > 0.
E.g.f.: exp( Series_Reversion( x * (1-x)^3 * exp(-x) ) ).

A153395 G.f.: A(x) = F(x*G(x)) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 3, 13, 69, 417, 2754, 19373, 142732, 1088875, 8533278, 68308641, 556242792, 4593529882, 38380159009, 323860968709, 2756019889146, 23625552635184, 203823793118268, 1768357487401595, 15418860927887232, 135042445950316514
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Comments

This appears to be the same as the sequence in row 1 of Fig. 21 of Novelli-Thibon 2014. - N. J. A. Sloane, Jun 14 2014

Examples

			G.f.: A(x) = F(x*G(x)) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1050*x^5 +...
G(x)*A(x)^2 = 1 + 3*x + 13*x^2 + 69*x^3 + 417*x^4 + 2754*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 21;
    G[_] = 0;
    Do[G[x_] = 1 + x*G[x]^4 + O[x]^nmax, nmax];
    F[x_] = Sum[CatalanNumber[n] x^n, {n, 0, nmax}];
    A[x_] = F[x G[x]];
    CoefficientList[A[x], x] (* Jean-François Alcover, Sep 09 2018 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+k,n-k)*k/(4*(n-k)+k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(4n-3k,n-k)*k/(4n-3k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)*A(x)^2 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)^2) = F(x/F(x)) where F(x) is the g.f. of A000108.
G.f. satisfies: A(x/H(x)) = F(x) where H(x) = 1 + x*H(x)^3 is the g.f. of A001764 and F(x) is the g.f. of A000108.

A153397 G.f.: A(x) = F(x*G(x)^4) = F(G(x)-1) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 6, 43, 334, 2717, 22776, 195000, 1695874, 14927990, 132673398, 1188412986, 10714602196, 97133633788, 884716464592, 8091061578807, 74259516900390, 683694381314696, 6312247839166260, 58424001667319720, 541971167468786770
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^4) = 1 + x + 6*x^2 + 43*x^3 + 334*x^4 +...
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 98*x^3 + 790*x^4 + 6618*x^5 +...
G(x)^4*A(x)^2 = 1 + 6*x + 43*x^2 + 334*x^3 + 2717*x^4 + 22776*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+4*k,n-k)*4*k/(4*(n-k)+4*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(4n,n-k)*k/n for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^4*A(x)^2 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)^2) = F(F(x)-1) where F(x) is the g.f. of A000108.
G.f. satisfies: A(x/H(x)) = F(H(x)-1) where H(x) = 1 + x*H(x)^3 is the g.f. of A001764 and F(x) is the g.f. of A000108.

A153398 G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x*G(x)) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 5, 33, 245, 1941, 16023, 136075, 1179833, 10392981, 92701411, 835271032, 7589337123, 69444928453, 639280878401, 5915683250220, 54991636090761, 513257729193329, 4807619948647095, 45177320023095160, 425766248463523359
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^2) = 1 + x + 5*x^2 + 33*x^3 + 245*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 76*x^3 + 581*x^4 + 4702*x^5 +...
A(x)^3 = 1 + 3*x + 18*x^2 + 130*x^3 + 1023*x^4 + 8457*x^5 +...
G(x)^2*A(x)^3 = 1 + 5*x + 33*x^2 + 245*x^3 + 1941*x^4 + 16023*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(4*(n-k)+2*k,n-k)*2*k/(4*(n-k)+2*k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(4n-2k,n-k)*k/(2n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^2*A(x)^3 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)) = F(x*F(x)) where F(x) is the g.f. of A001764.
G.f. satisfies: A(x/H(x)^2) = F(x) where H(x) = 1 + x*H(x)^2 is the g.f. of A000108 and F(x) is the g.f. of A001764.

A381908 Expansion of (1/x) * Series_Reversion( x / ((1+x) * B(x)) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 2, 9, 64, 556, 5351, 54818, 585941, 6459430, 72902748, 838174008, 9781930978, 115579403512, 1379879992445, 16620303073607, 201717610488447, 2464502123154530, 30286289207099652, 374115157763376043, 4642636869759251879, 57852132860181652189, 723592983110972398779
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(n+1, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x)) * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(n+1,n-k)/(n+4*k+1).
a(n) = hypergeom([(1+n)/4, (2+n)/4, (3+n)/4, (4+n)/4, -n], [2, (2+n)/3, (3+n)/3, (4+n)/3], -2^8/3^3). - Stefano Spezia, Mar 10 2025

A381909 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * B(x)) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 3, 16, 121, 1117, 11569, 128648, 1500054, 18091859, 223794730, 2823369749, 36185653049, 469808971400, 6165903108879, 81667617713170, 1090234962290114, 14654059445570507, 198151602861222385, 2693625234657193038, 36789566028850640226, 504600217464088999466
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(2*n+2, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(2*n+2,n-k)/(n+4*k+1).
a(n) = binomial(2*(1 + n), n)*hypergeom([(1+n)/4, (2+n)/4, (3+n)/4, (4+n)/4, -n], [(2+n)/3, (3+n)/3, (4+n)/3, 3+n], -2^8/3^3)/(1 + n). - Stefano Spezia, Mar 10 2025

A381910 Expansion of (1/x) * Series_Reversion( x / ((1+x)^3 * B(x)) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 4, 26, 222, 2243, 25243, 305217, 3878731, 51097713, 691596081, 9558970897, 134347855874, 1914131985782, 27582542400252, 401284140631911, 5886072268606617, 86951528919335670, 1292467847124221832, 19316795168721092789, 290107272994659617741, 4375905051887803660504
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(3*n+3, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^3 * B(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(3*n+3,n-k)/(n+4*k+1).
a(n) = binomial(3*(1 + n), n)*hypergeom([(1+n)/4, (2+n)/4, (3+n)/4, (4+n)/4, -n], [(2+n)/3, (3+n)/3, (4+n)/3, 4+2*n], -2^8/3^3)/(1 + n). - Stefano Spezia, Mar 10 2025
Previous Showing 21-30 of 261 results. Next