A381988
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 2, 15, 313, 10773, 510981, 30876463, 2267990159, 196204786025, 19539828320905, 2201822913234771, 276969947671828995, 38473403439454795837, 5849221857618942870029, 966078641687956464576119, 172251173569831561500070711, 32975613823747758363130520529, 6746227557293225645352382744593
Offset: 0
A382016
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 3, 37, 901, 32141, 1502701, 86737645, 5952271977, 473117681881, 42731313784921, 4321503662185601, 483709266378568429, 59360036142346311685, 7924411424305558028757, 1143251381667547987358581, 177245340974472998607370321, 29386977237154379581209716657
Offset: 0
-
a(n) = if(n==0, 1, n!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(n+3*k, k)/((n+3*k)*(n-k-1)!)));
A382059
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 7, 127, 3733, 152161, 7939261, 505087843, 37920697753, 3281899787137, 321700411900441, 35227497466867531, 4262151791317099285, 564639582580738851265, 81290104199287214904037, 12637400195063381931755731, 2109868901338065949399370161, 376504852688521502050554789889
Offset: 0
-
a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));
A153399
G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x/F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x*G(x)) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 6, 45, 371, 3225, 29007, 267239, 2506605, 23842644, 229369064, 2227345899, 21801617643, 214862158025, 2130226863222, 21231722675274, 212613977684254, 2138164077605865, 21585420400120710, 218677042735538547
Offset: 0
G.f.: A(x) = F(x*G(x)^3) = 1 + x + 6*x^2 + 45*x^3 + 371*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 102*x^3 + 868*x^4 + 7732*x^5 +...
A(x)^3 = 1 + 3*x + 21*x^2 + 172*x^3 + 1509*x^4 + 13764*x^5 +...
G(x)^3*A(x)^3 = 1 + 6*x + 45*x^2 + 371*x^3 + 3225*x^4 + 29007*x^5 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(4*(n-k)+3*k,n-k)*3*k/(4*(n-k)+3*k)))}
A186186
Expansion of 1/(1-x/(1-x)*A(x/(1-x))) where A(x) is the g.f. of A002293.
Original entry on oeis.org
1, 1, 3, 12, 63, 403, 2919, 22833, 187799, 1599718, 13984383, 124717327, 1130144932, 10375309228, 96290993853, 901915801437, 8514822062757, 80939662475426, 774025387921462, 7441380898249458, 71879194326339456, 697253570563306939, 6789448668631285664, 66340474776507262638
Offset: 0
-
a(n)={if(n<1, n==0, sum(m=1, n, sum(k=m, n, binomial(n-1,k-1)*m/(3*k-2*m)*binomial(4*k-3*m-1,k-m))))} \\ Andrew Howroyd, Apr 17 2021
A380605
Expansion of e.g.f. exp(2*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 2, 16, 260, 6544, 224672, 9797824, 518778752, 32332764160, 2319086302208, 188178044545024, 17043816700333568, 1704575787500099584, 186577340672207974400, 22185432394552519868416, 2847773562263558405439488, 392481896442656581445287936, 57805399208817471918851883008
Offset: 0
-
a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, 2^(n-k)*binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));
A380606
Expansion of e.g.f. exp(3*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 3, 27, 459, 11817, 411183, 18090459, 963856071, 60351513777, 4344290172891, 353515902334299, 32093341598006307, 3215888732193019353, 352572962113533923271, 41981774097966848444763, 5395346708265250105968927, 744369113570455426540767201, 109733083289828610273889269939
Offset: 0
-
a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, 3^(n-k)*binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));
A380643
Expansion of e.g.f. exp(x*G(3*x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 19, 865, 63289, 6402421, 827951491, 130454402149, 24246255965905, 5193341198368489, 1259626725043888051, 341256073037890028041, 102138911537774675080969, 33470594059698797005874845, 11918817613356955871120346979, 4582850483720783516657005897741
Offset: 0
-
a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, 3^k*binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));
A381940
G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 2, 7, 51, 440, 4170, 41921, 438972, 4736281, 52286520, 587774685, 6705201456, 77426676892, 903251324476, 10629495065550, 126032922655030, 1504194199010435, 18056321542477095, 217859030049153565, 2640609137351540510, 32137554969392230950, 392580762083089376630
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(k+1, n-k)/(5*k+1));
A381941
G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 3, 10, 71, 644, 6461, 68971, 768054, 8820281, 103694479, 1241799996, 15095075897, 185769856443, 2310006893997, 28978952155943, 366315306556482, 4661272734504606, 59659914501348239, 767539555514812321, 9920124234695256009, 128744011085858468131, 1677087982747514335025
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(2*k+2, n-k)/(5*k+1));