cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 308 results. Next

A336654 Numbers k such that lambda(k) is squarefree, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 18, 21, 22, 23, 24, 28, 31, 33, 36, 42, 43, 44, 46, 47, 49, 56, 59, 62, 63, 66, 67, 69, 71, 72, 77, 79, 83, 84, 86, 88, 92, 93, 94, 98, 99, 103, 107, 118, 121, 124, 126, 129, 131, 132, 134, 138, 139, 141, 142, 147, 154, 158, 161
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2020

Keywords

Examples

			6 is a term since lambda(6) = 2 is squarefree.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[160], SquareFreeQ[CarmichaelLambda[#]] &]

Formula

The number of terms not exceeding x is (k + o(1)) * x/(log(x)^(1-a)), where a = 0.373955... is Artin's constant (A005596), and k = 0.80328... is another constant (Pappalardi et al., 2003).

A341857 a(n) = psi(n^2)/n, psi = A002322.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 2, 6, 2, 10, 1, 12, 3, 4, 4, 16, 3, 18, 1, 2, 5, 22, 2, 20, 6, 18, 3, 28, 2, 30, 8, 10, 8, 12, 3, 36, 9, 4, 2, 40, 1, 42, 5, 12, 11, 46, 4, 42, 10, 16, 3, 52, 9, 4, 6, 6, 14, 58, 1, 60, 15, 6, 16, 12, 5, 66, 4, 22, 6, 70, 6, 72, 18, 20, 9
Offset: 1

Views

Author

Jianing Song, Feb 21 2021

Keywords

Comments

It is easy to show that n divides psi(n) for all n.
For k >= 2, n^k divides psi(n^(k+1)) if and only if n is not of the form 2*(p_1)^(e_1)*(p_2)^(e_2)*...*(p_m)^(e_m), where p_i are distinct odd primes not congruent to 1 modulo 2^k.
It seems that every positive integer occurs in this sequence. The first occurrence of each k is given by A341860.

Examples

			psi(220^2) = psi(2^4 * 5^2 * 11^2) = lcm(psi(2^4), psi(5^2), psi(11^2)) = lcm(4, 20, 110) = 220, so a(220) = psi(220^2)/220 = 220/220 = 1.
		

Crossrefs

Indices of 1 are given by A341858.

Programs

  • Mathematica
    Array[CarmichaelLambda[#^2]/# &, 100] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    a(n) = A002322(n^2)/n \\ See A002322 for its program

Formula

For odd n > 1, a(2n) = a(n)/2.

A353868 Numbers k such that the Carmichael function A002322(k) divides Dedekind psi A001615(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 14, 15, 16, 18, 20, 24, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 52, 54, 56, 60, 63, 64, 65, 70, 72, 75, 78, 80, 81, 84, 90, 96, 98, 100, 104, 105, 108, 112, 117, 119, 120, 126, 128, 130, 135, 140, 144, 150, 156, 160, 162, 168, 175, 180, 182, 189, 190, 192, 195, 196, 200, 204, 208, 210, 216
Offset: 1

Views

Author

Max Alekseyev, May 08 2022

Keywords

Comments

If coprime s,t are terms, then so is s*t. Also, if t is a term and prime p|t, then p*t is also a term. Squarefree terms are listed in A353869, primitive terms are listed in A353870, and their intersection forms A353871.

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[216], Divisible[psi[#], CarmichaelLambda[#]] &] (* Amiram Eldar, May 09 2022 *)

A353869 Squarefree numbers k such that the Carmichael function A002322(k) divides the Dedekind psi A001615(k).

Original entry on oeis.org

1, 2, 3, 6, 14, 15, 30, 35, 42, 65, 70, 78, 105, 119, 130, 182, 190, 195, 210, 238, 255, 357, 370, 377, 390, 418, 455, 510, 546, 570, 595, 663, 714, 754, 910, 969, 1045, 1110, 1118, 1131, 1190, 1254, 1326, 1330, 1365, 1547, 1558, 1615, 1785, 1885, 1887, 1938, 2090, 2190, 2261, 2262, 2470, 2590, 2639, 2730
Offset: 1

Views

Author

Max Alekseyev, May 08 2022

Keywords

Comments

If s,t are terms, then so is lcm(s,t); in particular, if s,t are coprime, then s*t is also a term. Primitive squarefree terms are listed in A353871.

Crossrefs

Intersection of A005117 and A353868.

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[3000], SquareFreeQ[#] && Divisible[psi[#], CarmichaelLambda[#]] &] (* Amiram Eldar, May 09 2022 *)

A354060 Irregular table read by rows: T(n,k) is the number of solutions to x^k == 1 (mod n), 1 <= k <= psi(n), psi = A002322.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 3, 2, 1, 6, 1, 4, 1, 2, 3, 2, 1, 6, 1, 2, 1, 4, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 4, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 4, 1, 8, 1, 4, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16
Offset: 1

Views

Author

Jianing Song, May 16 2022

Keywords

Comments

Row n and Row n' are the same if and only if (Z/nZ)* = (Z/n'Z)*, where (Z/nZ)* is the multiplicative group of integers modulo m.
Given n, T(n,k) only depends on gcd(k,psi(n)).

Examples

			Table starts
n = 1: 1;
n = 2: 1;
n = 3: 1, 2;
n = 4: 1, 2;
n = 5: 1, 2, 1, 4;
n = 6: 1, 2;
n = 7: 1, 2, 3, 2, 1, 6;
n = 8: 1, 4;
n = 9: 1, 2, 3, 2, 1, 6;
n = 10: 1, 2, 1, 4;
n = 11: 1, 2, 1, 2, 5, 2, 1, 2, 1, 10;
n = 12: 1, 4;
n = 13: 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12;
n = 14: 1, 2, 3, 2, 1, 6;
n = 15: 1, 4, 1, 8;
n = 16: 1, 4, 1, 8;
n = 17: 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16;
n = 18: 1, 2, 3, 2, 1, 6;
n = 19: 1, 2, 3, 2, 1, 6, 1, 2, 9, 2, 1, 6, 1, 2, 3, 2, 1, 18;
n = 20: 1, 4, 1, 8;
...
		

Crossrefs

Programs

  • PARI
    T(n,k)=my(Z=znstar(n)[2]); prod(i=1, #Z, gcd(k, Z[i]))

Formula

If (Z/nZ)* = C_{k_1} X C_{k_2} X ... X C_{k_r}, then T(n,k) = Product_{i=1..r} gcd(k,k_r).
T(p^e,k) = gcd((p-1)*p^(e-1),k) for odd primes p. T(2,k) = 1, T(2^e,k) = 2*gcd(2^(e-2),k) if k is even and 1 if k is odd.

A066605 Numbers k such that phi(k)/lambda(k) increases to a record value, where phi(k) is the Euler totient function (A000010) and lambda(k) is the Carmichael lambda function (A002322).

Original entry on oeis.org

1, 8, 24, 63, 80, 240, 455, 819, 1365, 2387, 2720, 3276, 3591, 4095, 7280, 9139, 13104, 18981, 21483, 21840, 24605, 32760, 44289, 45695, 63973, 122915, 132867, 172081, 191919, 246753, 319865, 520025, 575757, 860405, 959595, 1233765
Offset: 1

Views

Author

Robert G. Wilson v, Jan 13 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a = 0; c = {}; Do[ b = EulerPhi[n]/CarmichaelLambda[n]; If[ b > a, a = b; c = Append[c, n]], {n, 1, 10^7}]; c

Extensions

Title improved by Amiram Eldar, Jul 20 2019

A173694 Arguments n for which the Carmichael lambda function A002322(n) is a perfect square.

Original entry on oeis.org

1, 2, 5, 10, 15, 16, 17, 20, 30, 34, 37, 40, 48, 51, 60, 64, 68, 74, 80, 85, 95, 101, 102, 111, 120, 125, 135, 136, 148, 170, 185, 190, 192, 197, 202, 204, 222, 240, 247, 250, 255, 256, 257, 259, 270, 272, 285, 296, 303, 304, 320, 323, 333, 340, 351, 370, 375, 380, 394, 401
Offset: 1

Views

Author

Michel Lagneau, Nov 25 2010

Keywords

Examples

			37 is in the sequence because lambda(37) = 36 = 6^2.
		

Crossrefs

Cf. A002322.
Cf. A010052.

Programs

  • Haskell
    a173694 n = a173694_list !! (n-1)
    a173694_list = filter ((== 1) . a010052 . a002322) [1..]
    -- Reinhard Zumkeller, Sep 02 2014
  • Maple
    for n from 1 to 500 do if issqr(numtheory[lambda](n) ) then printf("%d,",n) ;     end if; end do:

Formula

A010052(A002322(a(n))) = 1. - Reinhard Zumkeller, Sep 02 2014

Extensions

Definition rephrased - R. J. Mathar, Nov 26 2010

A248881 Numbers n such that lambda(sum of even divisors of 2n) = lambda(sum of odd divisors of 2n) where lambda is the Carmichael function (A002322).

Original entry on oeis.org

1, 3, 5, 6, 9, 11, 13, 17, 18, 19, 25, 26, 27, 29, 36, 37, 38, 41, 43, 45, 49, 50, 53, 54, 59, 61, 63, 65, 67, 68, 72, 73, 74, 75, 81, 82, 83, 85, 86, 87, 89, 90, 95, 97, 98, 99, 100, 101, 103, 107, 109, 113, 117, 121, 122, 125, 126, 130, 131, 134, 137, 139
Offset: 1

Views

Author

Michel Lagneau, Mar 05 2015

Keywords

Comments

Number n such that A002322(A074400(n))= A002322(A000593(n)).
The squares of the form p^2 with p prime are in the sequence because the divisors of 2p^2 are {1,2,p,2p,p^2,2p^2} => sum of even divisors s0 = 2+2p+2p^2 = 2(p^2+p+p^2) and sum of odd divisors s1 = 1+p+p^2 and lambda(s0) = lambda(s1) = lambda(2*s0).
A majority of primes are in the sequence: 3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 73, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 157, 163, 173, 179, 181, 193, 197, ... but the primes 7, 23, 31, 47, 71, 79, 127, 151, 167, 191, 223, 239, 263, 367, 383, 431, ... are not in the sequence.

Examples

			18 is in the sequence because A002322(A074400(18))= A002322(78)= 12 and because A002322(A000593(18)) = A002322(13) = 12.
		

Crossrefs

Programs

  • Mathematica
    lst={};f[x_] := Plus @@ Select[Divisors[x], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[x], EvenQ[#]&]; Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]], AppendTo[lst,n/2]], {n, 1, 500}];lst
  • PARI
    a002322(n) = lcm(znstar(n)[2]);
    isok(n) = my(sod = sumdiv(2*n, d, d*(d%2))); my(sed = sigma(2*n) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 07 2015

A252911 Irregular triangular array read by rows: T(n,k) is the number of elements in the multiplicative group of integers modulo n that have order k, n>=1, 1<=k<=A002322(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 0, 0, 2, 1, 3, 1, 1, 2, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, 1, 3, 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 1, 2, 0, 0, 2, 1, 3, 0, 4, 1, 3, 0, 4, 1, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 8, 1, 1, 2, 0, 0, 2, 1, 1, 2, 0, 0, 2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 3, 0, 4
Offset: 1

Views

Author

Geoffrey Critzer, Dec 24 2014

Keywords

Comments

Row sums are A000010.
Column 2 = A155828(n) = A060594(n) - 1.

Examples

			1;
1;
1, 1;
1, 1;
1, 1, 0, 2;
1, 1;
1, 1, 2, 0, 0, 2;
1, 3;
1, 1, 2, 0, 0, 2;
1, 1, 0, 2;
1, 1, 0, 0, 4, 0, 0, 0, 0, 4;
1, 3;
1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4;
1, 1, 2, 0, 0, 2;
1, 3, 0, 4;
T(15,2)=3 because the elements 4, 11, and 14 have order 2 in the modulo multiplication group (Z/15Z)*. We observe that 4^2, 11^2, and 14^2 are congruent to 1 mod 15.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= n-> `if`(n=1, 1, (p-> seq(coeff(p, x, j), j=1..degree(p)))(
             add(`if`(igcd(n, i)>1, 0, x^order(i, n)), i=1..n-1))):
    seq(T(n), n=1..30);  # Alois P. Heinz, Dec 30 2014
  • Mathematica
    Table[Table[
       Count[Table[
         MultiplicativeOrder[a, n], {a,
          Select[Range[n], GCD[#, n] == 1 &]}], k], {k, 1,
        CarmichaelLambda[n]}], {n, 1, 20}] // Grid

A268177 Numbers m such that Sum_{i=1..q} 1/lambda(d(i)) is an integer, where d(i) are the q divisors of m and lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

1, 2, 6, 8, 12, 15, 24, 28, 30, 40, 70, 84, 112, 120, 140, 210, 240, 252, 280, 315, 336, 351, 357, 360, 420, 550, 630, 684, 702, 714, 836, 840, 884, 912, 952, 988, 1092, 1100, 1120, 1140, 1364, 1386, 1650, 1710, 1820, 2002, 2040, 2088, 2090, 2200, 2394, 2484
Offset: 1

Views

Author

Michel Lagneau, Jan 28 2016

Keywords

Comments

The corresponding integers are 1, 2, 3, 3, 4, 2, 5, 3, 4, 4, 3, 5, 4, 7, 4, 5, 8, 6, 5, 3, 7, 2, 2, 8, 7,...
A majority of numbers of the sequence are even, except 1, 15, 315, 351, 357, 2871, 3663,...
Replacing the function lambda(n) by the Euler totient function phi(n) (A000010) gives only the short sequence {1, 2, 6} for n < 10^7.

Examples

			6 is in the sequence because the divisors of 6 are {1,2,3,6} => 1/lambda(1)+1/lambda(2)+1/lambda(3)+ 1/lambda(6) = 1/1 + 1/1 + 1/2 + 1/2 = 3 is an integer.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[IntegerQ[Total[1/CarmichaelLambda[Divisors[n]]]],AppendTo[lst,n]], {n, 0, 2500}];lst
Previous Showing 41-50 of 308 results. Next