cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 71 results. Next

A326401 Expansion of Sum_{k>=1} k * x^k / (1 + x^k + x^(2*k)).

Original entry on oeis.org

1, 1, 3, 3, 4, 3, 8, 5, 9, 4, 10, 9, 14, 8, 12, 11, 16, 9, 20, 12, 24, 10, 22, 15, 21, 14, 27, 24, 28, 12, 32, 21, 30, 16, 32, 27, 38, 20, 42, 20, 40, 24, 44, 30, 36, 22, 46, 33, 57, 21, 48, 42, 52, 27, 40, 40, 60, 28, 58, 36, 62, 32, 72, 43, 56, 30, 68, 48, 66, 32
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[k x^k/(1 + x^k + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 3]] &] - DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 70}]
    f[p_, e_] := Which[p == 3, p^e, Mod[p, 3] == 1, (p^(e + 1) - 1)/(p - 1), Mod[p, 3] == 2, (p^(e + 1) + (-1)^e)/(p + 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 3, 3^f[i,2], if(f[i,1]%3 == 1, (f[i,1]^(f[i,2]+1) - 1)/(f[i,1] - 1), (f[i,1]^(f[i,2]+1) + (-1)^f[i,2])/(f[i,1] + 1))));} \\ Amiram Eldar, Nov 06 2022

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} d - Sum_{d|n, n/d==2 (mod 3)} d.
a(n) = A326399(n) - A326400(n).
Multiplicative with a(3^e) = 3^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1 (mod 3), and (p^(e+1) + (-1)^e)/(p + 1) if p == 2 (mod 3). - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{primes p == 1 (mod 3)} 1/(1 - 1/p^2) * Product_{primes p == 2 (mod 3)} 1/(1 + 1/p^2) = (1/2) * A175646 * (2*Pi^2/27)/A340577 = 0.3906512064... . - Amiram Eldar, Nov 06 2022

A364443 a(n) is the number of integers k of the form x^2 + x*y + y^2 (A003136) with n^2 < k < (n+1)^2.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 4, 5, 4, 6, 5, 6, 8, 7, 8, 7, 9, 9, 11, 10, 10, 11, 10, 13, 12, 13, 13, 13, 14, 13, 16, 16, 16, 14, 16, 17, 16, 18, 20, 19, 19, 19, 19, 21, 20, 22, 21, 21, 22, 22, 24, 25, 21, 24, 25, 24, 27, 27, 25, 29, 26, 28, 26, 27, 29, 29, 30, 28, 29, 32, 31
Offset: 0

Views

Author

Hugo Pfoertner, Aug 05 2023

Keywords

Comments

a(n) is the number of circles centered at (0,0) that pass through grid points of the hexagonal lattice that intersect the interior of an interval n < x < n+1 on the x-axis.

Crossrefs

Programs

  • PARI
    is_a003136(n) = !n || #qfbsolve(Qfb(1, 1, 1), n, 3);
    for (k=0, 75, my (k1=k^2+1, k2=k^2+2*k, m=0); for (j=k1, k2, m+=is_a003136(j)); print1(m,", "))
    
  • Python
    from sympy import factorint
    def A364443(n): return sum(1 for k in range(n**2+1,(n+1)**2) if not any(e&1 for p, e in factorint(k).items() if p % 3 == 2)) # Chai Wah Wu, Aug 07 2023

A035181 a(n) = Sum_{d|n} Kronecker(-9, d).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 0, 4, 1, 4, 0, 3, 2, 0, 2, 5, 2, 2, 0, 6, 0, 0, 0, 4, 3, 4, 1, 0, 2, 4, 0, 6, 0, 4, 0, 3, 2, 0, 2, 8, 2, 0, 0, 0, 2, 0, 0, 5, 1, 6, 2, 6, 2, 2, 0, 0, 0, 4, 0, 6, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 3, 0, 0, 4, 0, 10, 1, 4, 0, 0, 4, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 9, 2, 4, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 4*x^8 + x^9 + 4*x^10 + 3*x^12 + ...
		

Crossrefs

Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), A035184 (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -9, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 24 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -9, d)))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -9, p) * X))) [n])} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, e+1, if( p==3, 1, if( p%4==1, e+1, (1 + (-1)^e)/2))))))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    A035181(n)=sumdivmult(n,d,kronecker(-9,d)) \\ M. F. Hasler, May 08 2018

Formula

From Michael Somos, Jun 24 2011: (Start)
a(n) is multiplicative with a(2^e) = e + 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4) and p > 3.
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-9, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-9, p) * p^-s)). (End)
a(3*n) = a(n). a(2*n + 1) = A125079(n). a(4*n + 1) = A008441(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.094395... (A019693). - Amiram Eldar, Oct 17 2022

A293899 Number of proper divisors of the form 3k+1 minus number of proper divisors of the form 3k+2.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 1, -1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 2, -1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, -1, 1, 1, 1, 1, 2, -1, 1, 0, 1, 1, 0, -1, 1, 1, 2, 1, 0, 1, 1, 0, -1, 1, 2, -1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 0, -1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, 1, 2, -1, 1, 0, -1, 1, 0, 3, 1, 2, -1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[Mod[#, 3] == 1, # != n] &] - DivisorSum[n, 1 &, And[Mod[#, 3] == 2, # != n] &], {n, 105}] (* Michael De Vlieger, Nov 08 2017 *)
    Table[Total[Which[Mod[#,3]==1,1,Mod[#,3]==2,-1,True,0]&/@Most[ Divisors[ n]]],{n,110}] (* Harvey P. Dale, Nov 26 2021 *)
  • PARI
    A293895(n) = sumdiv(n,d,(dA293896(n) = sumdiv(n,d,(dA293899(n) = (A293895(n) - A293896(n));

Formula

When n = 3k, a(n) = A002324(n), when n = 3k+1, a(n) = A002324(n) - 1, when n = 3k+2, a(n) = A002324(n) + 1.
a(n) = A002324(n) - A010872(n) (mod 3).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(3)) = 0.604599... (A073010). - Amiram Eldar, Nov 25 2023

A357275 Smallest side of integer-sided primitive triangles whose angles satisfy A < B < C = 2*Pi/3.

Original entry on oeis.org

3, 7, 5, 11, 7, 13, 16, 9, 32, 17, 40, 11, 19, 55, 40, 24, 13, 23, 65, 69, 56, 25, 75, 15, 104, 32, 56, 29, 17, 87, 85, 119, 31, 72, 93, 64, 144, 19, 95, 133, 40, 136, 35, 105, 21, 105, 37, 111, 185, 88, 152, 176, 23, 80, 115, 161, 41, 123, 240, 48, 205, 240, 43, 25, 129, 175, 215, 88
Offset: 1

Views

Author

Bernard Schott, Sep 23 2022

Keywords

Comments

The triples of sides (a,b,c) with a < b < c are in nondecreasing order of largest side c, and if largest sides coincide, then by increasing order of the smallest side. This sequence lists the a's.
For the corresponding primitive triples and miscellaneous properties and references, see A357274.
Solutions a of the Diophantine equation c^2 = a^2 + a*b + b^2 with gcd(a,b) = 1 and a < b.
Also, a is generated by integers u, v such that gcd(u,v) = 1 and 0 < v < u, with a = u^2 - v^2.
This sequence is not increasing. For example, a(2) = 7 for triangle with largest side = 13 while a(3) = 5 for triangle with largest side = 19.
Differs from A088514, the first 20 terms are the same then a(21) = 56 while A088514(21) = 25.
A229858 gives all the possible values of the smallest side a, in increasing order without repetition, but for all triples, not necessarily primitive.
All terms of A106505 are values taken by the smallest side a, in increasing order without repetition for primitive triples, but not all the lengths of this side a are present; example: 3 is not in A106505 (see comment in A229849).

Examples

			a(2) = a(5) = 7 because 2nd and 5th triple are respectively (7, 8, 13) and (7, 33, 37).
		

Crossrefs

Cf. A357274 (triples), this sequence (smallest side), A357276 (middle side), A357277 (largest side), A357278 (perimeter).

Programs

  • Maple
    for c from 5 to 181 by 2 do
    for a from 3 to c-2 do
    b := (-a + sqrt(4*c^2-3*a^2))/2;
    if b=floor(b) and gcd(a, b)=1 and a
    				

Formula

a(n) = A357274(n, 1).

A113063 Associated with theta series of hexagonal net with respect to a node.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 1, 0, 0, 2, 0, 4, 0, 0, 0, 1, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 4, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1

Author

Michael Somos, Oct 13 2005

Keywords

Comments

Denoted by |lambda(n)| on page 4 (1.7) in Kassel and Reutenauer arXiv:1610.07793. - Michael Somos, Jun 04 2015

Examples

			G.f. = x + 2*x^3 + x^4 + 2*x^7 + 2*x^9 + 2*x^12 + 2*x^13 + x^16 + 2*x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, 1, 1, -1, -1, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* Michael Somos, Jun 04 2015 *)
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[3, e_] := 2; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, 1, 1, -1, -1, 1, -1][d%9 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 2, p%6==1, e+1, !(e%2))))};

Formula

Moebius transform is period 9 sequence [ 1, -1, 1, 1, -1, -1, 1, -1, 0, ...].
a(n) is multiplicative with a(p^e) = 2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 2, 5 (mod 6).
a(3*n + 2) = 0. a(3*n + 1) = A033687(n), a(3*n) = 2 * A002324(n).
3 * a(n) = A113062(n) unless n=0.
G.f.: Sum_{k>0} f(x^k) + f(x^(3*k)) where f(x) := x / (1 + x + x^2). - Michael Somos, Jun 04 2015
a(n) = |A123477(n)|. - Michael Somos, Dec 10 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(9*sqrt(3)) = 0.806133... (A121839 - 1). - Amiram Eldar, Dec 28 2023

A357112 a(n) = A035019(n)/6 for n > 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 4, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 4, 2, 1, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 2, 4, 2, 2, 1, 2, 2, 2, 2, 1, 2, 4, 2, 1, 4, 2, 2, 4, 2, 2
Offset: 1

Author

Hugo Pfoertner, Sep 11 2022

Keywords

Crossrefs

A125096 Expansion of -1 + (phi(q) * phi(q^2) + phi(-q^2) * phi(q^4)) / 2 in powers of q.

Original entry on oeis.org

1, 0, 2, 2, 0, 0, 0, 2, 3, 0, 2, 4, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 6, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 4, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 6, 2, 0, 2, 4, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 4, 2, 0, 6, 2, 0, 0, 0, 0, 0
Offset: 1

Author

Michael Somos, Nov 20 2006

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[MemberQ[{1, 3}, Mod[p, 8]], e + 1, (1 + (-1)^e)/2]; f[2, e_] := If[e > 1, 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 13 2022 *)
  • PARI
    {a(n) = if( n<1, 0, qfrep([1, 0; 0, 8], n)[n] + qfrep([3, 1; 1, 3], n)[n])}

Formula

a(n) is multiplicative with a(2) = 0, a(2^e) = 2 if e>1, a(p^e) = e+1 if p == 1, 3 (mod 8), a(p^e) = (1+(-1)^e)/2 if p == 5, 7 (mod 8).
a(4*n + 2) = a(8*n + 5) = a(8*n + 7) = 0. a(4*n) = 2 * A002325(n). a(8*n + 1) = A112603(n). a(8*n + 3) = A033761(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(2)) = 1.110720... (A093954). - Amiram Eldar, Oct 13 2022

A157227 Number of primitive inequivalent (up to Pi/3 rotation) non-hexagonal sublattices of hexagonal (triangular) lattice of index n.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 2, 4, 4, 6, 4, 8, 4, 8, 8, 8, 6, 12, 6, 12, 10, 12, 8, 16, 10, 14, 12, 16, 10, 24, 10, 16, 16, 18, 16, 24, 12, 20, 18, 24, 14, 32, 14, 24, 24, 24, 16, 32, 18, 30, 24, 28, 18, 36, 24, 32, 26, 30, 20, 48, 20, 32, 32, 32, 28, 48, 22, 36, 32, 48
Offset: 1

Author

N. J. A. Sloane, Feb 25 2009

Keywords

Crossrefs

Cf. A000086 (primitive hexagonal sublattices), A002324 (all hexagonal sublattices), A145394 (all sublattices), A001615, A304182.

Formula

a(n) = (A001615(n) - A000086(n))/3. - Andrey Zabolotskiy, May 09 2018

Extensions

New name and more terms from Andrey Zabolotskiy, May 09 2018

A344471 Number of points in the hexagonal lattice A_2 on the circle centered at the origin with squared radius A230655(n).

Original entry on oeis.org

1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 192, 216, 288, 384, 432, 576, 648, 768, 864, 960, 1152, 1296, 1536, 1728, 1920, 2304, 2592, 3072, 3456, 3840, 4608, 5184, 6144, 6912, 7680, 9216, 10368, 12288, 13824, 15360, 18432, 20736, 23040, 24576, 27648
Offset: 1

Author

Jianing Song, May 20 2021

Keywords

Comments

Record values of A004016.

Examples

			24 is a term because the circle with radius sqrt(91) centered at the origin hits exactly 24 points in the A_2 lattice, and any circle with radius < sqrt(91) centered at the origin hits fewer than 24 points.
		

Crossrefs

Cf. A071385 (similar sequence).

Programs

  • PARI
    my(v=list_A344473(10^15), rec=0); print1(1, ", "); for(n=1, #v, if(numdiv(v[n])>rec, rec=numdiv(v[n]); print1(6*rec, ", "))) \\ see program for A344473

Formula

a(n) = A004016(A230655(n)).
a(n) = 6*A000005(A230655(n)) = 6*A002324(A230655(n)), n > 1.
Previous Showing 51-60 of 71 results. Next